基于 UPLC-Q-Exactive Orbitrap-MS 和网络药理学的 川蛭通络胶囊化学成分及作用机制研究

杨柯楠¹,关永霞²,范建伟²,袁晓梅²,张龙霏¹,刘谦¹,李静¹* (1. 山东中医药大学,山东济南 250355; 2. 鲁南制药集团股份有限公司 经方与现代中药融合创新 全国重点实验室,山东临沂 276005)

[摘要] 采用超高效液相色谱-四极杆/静电场轨道阱高分辨质谱(UPLC-Q-Exactive Orbitrap-MS)技术对川蛭通络胶囊内化学成分进行分析和鉴定,明确其药效物质基础,同时结合网络药理学研究方法探讨川蛭通络胶囊治疗脑梗死的作用机制。以乙腈-1%乙酸水为流动相进行梯度洗脱,质谱正、负离子模式扫描。采用 Xcalibur 4.2 软件,精确质荷比、二级质谱裂解碎片等信息结合对照品的比对和文献数据进行化合物解析。共鉴定得出152个化合物,包括有机酸类32个,黄酮及其苷类35个,二萜类33个,苯酞类13个,三萜及三萜皂苷类12个,含氮类23个以及其他类4个,并分析其裂解规律。利用 SwissTargetPrediction、GeneCards、DAVID等数据库对川蛭通络胶囊发挥药效作用的核心靶点及作用机制进行预测分析,PPI 网络拓扑分析得到 TNF、VEGFA、EGFR、IL1B、CTNNB1等10个核心靶点,KEGG 富集显示川蛭通络胶囊主要通过调控脂质和动脉粥样硬化、癌症中的糖聚蛋白、癌症中的 microRNAs、流体剪切应力和动脉粥样硬化等通路发挥作用。对关键成分与核心靶点进行分子对接,分子对接结果显示川蛭通络胶囊关键成分与核心靶点初步展现出较强的结合能力。该研究阐明了川蛭通络胶囊中的化学成分,同时结合网络药理学探究川蛭通络胶囊治疗脑梗死的核心靶点及作用机制,为川蛭通络胶囊的药效物质基础研究及其制剂质量标准制定提供科学参考。

[关键词] 川蛭通络胶囊; UPLC-Q-Exactive Orbitrap-MS; 化学成分; 网络药理学

Chemical constituents and mechanism of Chuanzhi Tongluo Capsules based on UPLC-Q-Exactive Orbitrap-MS and network pharmacology

YANG Ke-nan¹, GUAN Yong-xia², FAN Jian-wei², YUAN Xiao-mei², ZHANG Long-fei¹, LIU Qian¹, LI Jing^{1*}

(1. Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; 2. State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi 276005, China)

[Abstract] The chemical constituents of Chuanzhi Tongluo Capsules were analyzed and identified using ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry (UPLC-Q-Exactive Orbitrap-MS) to clarify the pharmacological substance basis. In addition, network pharmacology was employed to explore the mechanism of Chuanzhi Tongluo Capsules in the treatment of cerebral infarction. Gradient elution was performed using acetonitrile and 1% acetic acid in water as the mobile phase. Mass spectrometry was performed in positive and negative ion modes. Xcalibur 4. 2 software was used for compound analysis, including accurate mass-to-charge ratio and MS/MS fragment information, combined with the comparison of reference standards and literature data. A total of 152 compounds were identified, including 32 organic acids, 35 flavonoids and their glycosides, 33 diterpenes, 13 phthalides, 12 triterpenes and triterpene saponins, 23 nitrogen-containing compounds, and 4 other compounds, and their fragmentation patterns were analyzed. SwissTargetPrediction, GeneCards, DAVID, and other databases were used to predict and

[收稿日期] 2023-04-18

[通信作者] *李静,博士,副教授,研究方向为中药分析、中药质量控制与资源,E-mail: ljsdnu@163. com

[作者简介] 杨柯楠,硕士研究生,E-mail:ykn324116@163.com

[[]基金项目] 山东省自然科学基金项目(ZR2021QH238);山东省重点研发计划项目(2021CXGC010508);现代农业产业技术体系建设专项 (CARS-21);2023 年度山东省中医药科技项目(M-2023266)

analyze the core targets and mechanism of Chuanzhi Tongluo Capsules. Protein-protein interaction (PPI) network topology analysis identified 10 core targets, including TNF, VEGFA, EGFR, IL1B, and CTNNB1. KEGG enrichment analysis showed that Chuanzhi Tongluo Capsules mainly exerted their effects through the regulation of lipid and atherosclerosis, glycoproteins in cancer, MicroRNAs in cancer, fluid shear stress, and atherosclerosis-related pathways. Molecular docking was performed between the key constituents and core targets, and the results demonstrated a strong binding affinity between the key constituents of Chuanzhi Tongluo Capsules and the core targets. This study comprehensively elucidated the chemical constituents of Chuanzhi Tongluo Capsules and explored the core targets and mechanism in the treatment of cerebral infarction based on network pharmacology, providing a scientific reference for the study of the pharmacological substance basis and formulation quality standards of Chuanzhi Tongluo Capsules.

[Key words] Chuanzhi Tongluo Capsules; UPLC-Q-Exactive Orbitrap-MS; chemical constituents; network pharmacology

DOI:10.19540/j. cnki. cjcmm. 20230614. 302

中药复方川蛭通络胶囊由水蛭、川芎、丹参、黄 芪共4味药合理配方加工提取所制成,临床上常用 于治疗中风病经络(脑梗死)恢复期血虚气虚证[1]。 川蛭通络胶囊疗效确切,临床应用广泛,大量研究表 明,川蛭通络胶囊在治疗缺血性脑梗死具有显著的 优势[2-4],联合化学药物治疗相较于单独使用化学药 物治疗,可更好地改善患者脑循环障碍,恢复损伤神 经功能[5-6]。但是目前对于川蛭通络胶囊研究主要 集中在药理药效以及临床应用上,对其药效基础研 究及质量控制等方面几乎没有文献报道。且川蛭通 络胶囊的质量控制标准中,也仅将阿魏酸(来源于 川芎)这一成分作为唯一定量指标,其他成分尚不 明确,质量控制依据明显不足。超高效液相色谱-四 极杆/静电场轨道阱高分辨质谱(UPLC-Q-Exactive Orbitrap-MS)技术不仅具有液相色谱对复杂样品较 强分离能力的特征,又具有质谱的高灵敏度、高选择 性以及提供相对分子质量和丰富结构信息的特征, 近年来广泛应用于中药复方成分研究及其定性定量 分析^[7-9]。因此,本研究采用 UPLC-Q-Exactive Orbitrap-MS 技术,对川蛭通络胶囊的化学成分进行高效 鉴定分析,进一步通过网络药理学及分子对接技术 探究川蛭通络胶囊多成分、多靶点、多通路治疗脑梗 死的作用机制,为川蛭通络胶囊的质量控制以及药 效物质基础的深入研究提供依据。

1 材料

Vanquish 系列高效液相色谱仪(美国 ThermoFisher Scientific 公司),包括包括四元梯度泵、在 线脱气机、自动进样器、柱温箱、恒温箱及紫外检测 器;Q-Exactive 四极杆/静电场轨道阱高分辨质谱系 统(美国 ThermoFisher Scientific 公司);Waters AC-QUITY UPLC HSS T3 色谱柱(2.1 mm×100 mm, 1.8 µm,美国 Water 公司);JY-15 台式超声波清洗器(鼎 泰生化科技设备制造有限公司);XR204 型万分之 一分析天平(瑞士 Mettler Toledo 公司)。

对照品欧当归内酯 A(批号 111826-201806)、阿 魏酸(批号 110773-201915)、隐丹参酮(批号 110852-201807)、咖啡酸(批号 110885-201703)、芒 柄花素(批号 11703-201504)、毛蕊异黄酮葡萄糖苷 (批号 111920-201907)、丹酚酸 B(批号 11562-201917)、丹参酮 II_A(批号 110766-202022)、绿原酸 (批号 110753-202018)、迷迭香酸(批号 111871-201706)均购自中国食品药品检定研究院,藁本内 酯(批号 070017-201912)购自上海鸿永生物科技有 限公司,以上对照品经峰面积归一化质量分数均大 于 99%;甲醇、乙腈、乙酸(色谱纯,美国 Merck 公 司),水为超纯水,其他试剂均为分析纯;川蛭通络 胶囊(鲁南厚普制药有限公司,批号 16210131)。

2 方法

2.1 川蛭通络胶囊化学成分分析

2.1.1 供试品和对照品溶液的制备 取川蛭通络 胶囊内容物,研细,称取约1g,精密称定,置100 mL 棕色量瓶中,精密加入75%甲醇50 mL,密塞,摇匀, 称定质量,超声处理30 min(功率250 W,频率35 kHz),放冷,再称定质量,用75%甲醇补足失重,摇 匀,取上清液,过0.22 μm 微孔滤膜滤过,取续滤 液,即得供试品溶液。

取上述对照品适量,精密称定,置于10 mL 棕色 量瓶中,加入甲醇并定容至刻度,取上清液,过0.22 µm 微孔滤膜滤过,取续滤液,即得混合对照品 溶液。

2.1.2 色谱条件 Waters ACQUITY UPLC HSS T₃ 色谱柱(2.1 mm×100 mm, 1.8 μm),流动相为 1% 醋酸水溶液(A)-乙腈溶液(B),洗脱梯度(0~20 min,0~15% B;20~50 min,15%~23% B;50~80 5217 min,23%~55% B;80~95 min,55%~68% B),流速 0.2 mL·min⁻¹,柱温 30 ℃,进样量 1 μL。

2.1.3 质谱条件 电喷雾离子源,正/负离子模式,扫描模式 Full MS/dd-MS²,Full MS 扫描质量范 围 *m/z* 150~1 500,分辨率 70 000, MS² 扫描分辨 率 17 500,辅助气流流速 35 arb,鞘气流速 10 arb, 毛细管温度 350 ℃,辅助气温度 350 ℃,物化电压 3.0 kV,碰撞能量梯度 20、30、40 eV。

2.1.4 质谱数据分析 通过查阅国内外大量文献, 搜集川蛭通络胶囊以及水蛭、川芎、丹参、黄芪的化 学成分的相关信息,建立川蛭通络胶囊化学成分数 据库,进样分析后,将 UPLC-Q-Exactive Orbitrap-MS 的数据导入 Xcalibur 4.2 软件进行质谱数据处理分 析,根据质谱数据信息,与数据库进行对比,对各色 谱峰进行初步预测,再依据对照品或 PubChem 数据 库、HMDB 数据库及参考文献提供的保留时间及高 能碰撞下产生的碎片离子信息等,分析各化合物裂 解规律最终确定化合物信息。

2.2 网络药理学及分子对接研究

2.2.1 活性成分的筛选 将鉴定出的所有化学成 分导入 TCMSP 数据库中,查找其 ADME 参数,设置 ADME 参数筛选条件:药物相似性(DL)≥0.18、□ 服吸收利用度(OB)≥30%,结合相关文献报道与脑 梗死明确相关的活性成分,整合得到川蛭通络胶囊 的候选活性成分。

2.2.2 靶点库的建立 通过 PubChem 数据库获 取川蛭通络胶囊活性成分的 Canonical SMILES,登 录 SwissTargetPrediction 服务器将化合物的 Canonical SMILES 导入,选择种属为 *Homo sapiens*, probability≥0 为阈值,从而筛选其对应靶点。将所有靶 点输入至 UniPort 数据库校正靶点名称为标准 名称。

以"cerebral infarction""cerebral ischemic stroke" "brain infarction"为检索词,在 GeneCards 数据库和 OMIM 数据库中检索,选取 GeneCards 数据库中相关 性分数>10 的靶点,与 OMIM 数据库中获得的靶点 整合去重,获得疾病预测靶点。

使用 Venny 2.1,将川蛭通络胶囊活性成分 预测靶点与脑梗死预测靶点取交集,将川蛭通络 胶囊活性成分的靶点对应脑梗死相关疾病靶点, 获得药物治疗脑梗死的相关作用靶点及共有 靶点。 2.2.3 共有靶点蛋白质-蛋白质相互作用网络 将 共有靶点导入 STRING 数据库,分析川蛭通络胶囊 治疗脑梗死靶点之间的相互作用,选择"Homo sapiens"作为蛋白种属,设置连接评分(combined score)为0.400,隐藏游离靶点,使用 Cytoscape 3.9.1 软件构建共有靶点的蛋白质-蛋白质相互作用(protein protein interaction, PPI)网络,利用 Network Analysis 工具分析网络拓扑参数,筛选关键靶点。

2.2.4 基因本体(Gene Ontology, GO)功能及京都 基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes, KEGG)通路富集分析 将共有 靶点导入 DAVID 数据库,设置标识符为"OFFICIAL GENE SYMBOL",设置物种和背景为"*Homo sapiens*",进行 GO 功能和 KEGG 通路富集分析。使 用 Bioinformatics 在线分析软件,将结果进行可视化 处理。

2.2.5 "成分-共有靶点"网络构建 将川蛭通络胶 囊的药物、对应化合物、成分-疾病共有靶点信息导 入 Cytoscape 3.9.1 软件,构建"成分-共有靶点"网 络,利用 Network Analysis 工具分析网络拓扑参数, 筛选关键化合物。

2.2.6 关键成分与核心靶点的分子对接验证 从 PDB蛋白数据库中获取核心靶点蛋白的晶体结构、 TCMSP数据库中获得关键成分的3D结构,使用Py-MOL 2.5.4软件去除靶点蛋白中的原始蛋白和水分 子,使用AutoDockTools 1.5.7软件对关键成分及核 心靶点进行加氢加电荷处理,使用PaDEL-ADV进 行分子对接,并用PyMOL 2.5.4进行可视化处理, 结合能越低对接结果越好。

3 结果与分析

3.1 化学成分分析

基于 2.1.2、2.1.3 项下的色谱、质谱条件,结 合 2.1.4 项下的数据分析方法,对川蛭通络胶囊 进行全成分分析。在正、负离子 2 种不同扫描模 式下共从川蛭通络胶囊内分析鉴定出 152 个化学 成分,总离子流图见图 1。其中有机酸类 32 个,黄 酮及其苷类 35 个,二萜类 33 个,苯酞类 13 个,三 萜及三萜皂苷类 12 个,含氮类成分 23 个,其他类 成分 4 个。各化合物通过与药材基峰离子图 (BPC)图谱对照确定其来源归属,7 个峰来源于水 蛭,有 30 个峰来源于川芎,主要为苯酞类成分,63 个峰来源于丹参,主要为有机酸类及二萜醌类成

分,71个峰来源于黄芪,主要为黄酮类成分。具体 對

鉴定结果见表1。

A. 正离子模式; B. 负离子模式。

图 1 川蛭通络胶囊总离子流图

Fig. 1 Total ion current chromatogram of Chuanzhi Tongluo Capsules

表 1	川蛭诵络胶囊化学成分鉴定
11.1	开起巡扣放表化于成万金足

				离子	相对分	▶子质量(m/z)			归
No.	t _R ∕min	成分	化学式	类型	理论值	实测值	误差/ ×10 ⁻⁶	主要碎片离子(m/z)	类别	属
1	1.35	精氨酸	$\mathrm{C_6H_{14}O_2N_4}$	$[M+H]^+$	175.118 95	175.118 96	-3.09	175. 118 7 160. 071 4 130. 097 4	含氮类	d
								116.0707,76.0511		
2	1.37	苏氨酸	$\mathrm{C_4H_9NO_3}$	[M-H] ⁻	118.049 86	118.049 97	-3.80	118.049 7,98.023 4,74.023 4,	含氮类	d
								72.044 2		
3	1.43	谷氨酸	$\mathrm{C_5H_9NO_4}$	$[M-H]^{-}$	146.044 78	146.044 89	-3.03	146. 044 8 128. 034 1 102. 054 7	含氮类	d
4	1.48	甜菜碱	$\mathrm{C_5H_{11}NO_2}$	$[M+H]^+$	118.086 25	118.086 36	-3.76	118.086 4,59.073 7	含氮类	d
5	1.57	脯氨酸	$C_5H_9NO_2$	$[M+H]^+$	116.070 60	116.07079	-3.13	116.0707,70.0658	含氮类	d
6	2.41	烟酸	$\rm C_6H_5NO_2$	$[M+H]^+$	124.039 30	124.039 41	-3.58	124. 039 3 96. 044 8 80. 050 0	含氮类	a 'd
7	2.51	腺嘌呤	$C_5H_5N_5$	[M+H] ⁺	136.061 77	136.061 69	-0.60	137. 066 1 136. 061 6 119. 035 4	含氮类	a、
										p`q
8	2.56	furan-2-carboxylic	$\mathrm{C_5H_4O_3}$	[M-H] ⁻	111.007 67	111.007 55	-1.09	111.007 5,67.017 6	有机酸	d
		acid								
9	3.27	次黄嘌呤	$\mathrm{C_5H_4N_4O}$	$[M+H]^+$	137.045 78	137.04572	-0.49	137.045 6,110.035 0	含氮类	а
10	3.43	丁二酸	$\mathrm{C_4H_6O_4}$	[M-H] ⁻	117.018 23	117.018 28	0.38	-	有机酸	а
11	4.04	黄嘌呤	$\mathrm{C_5H_4N_4O_2}$	[M-H] ⁻	151.025 05	151.025 28	-2.12	151. 025 1,108. 019 1	含氮类	а
12	4.07	尿苷	$\mathrm{C_9H_{12}N_2O_6}$	[M-H] ⁻	243.061 16	243.062 19	1.97	243. 062 0 200. 055 7 152. 034 1	含氮类	а
								140. 034 3 110. 023 5		
13	4.09	尿嘧啶	$\mathrm{C_4H_4N_2O_2}$	$[M+H]^+$	113.034 55	113.034 79	2.09	113.034 7,96.008 4,88.968 9,	含氮类	a 、
								70. 958 5		p`q
14	4.26	酪氨酸	$\mathrm{C_9H_{11}NO_3}$	$[M+H]^+$	182.081 16	182.081 10	3.40	165. 054 6,147. 043 9,136. 075 6,	含氮类	d
								123.044 1,119.049 2		
15	4.30	亮氨酸	$\mathrm{C_6H_{13}NO_2}$	$[M+H]^+$	132. 101 90	132. 101 94	-3.89	150. 968 7, 132. 058 2, 90. 948 2,	含氮类	d
								86. 096 9,72. 937 8		
16	7.45	腺苷	${\rm C}_{10}{\rm H}_{13}{\rm N}_{5}{\rm O}_{4}$	$[M+H]^+$	268.104 03	268.103 49	-2.02	268. 103 4,136. 061 6	含氮类	a 、
										h d

续表1

相对分子质量(<i>m/z</i>)										
No.	$t_{\rm R}/{ m min}$	成分	化学式	丙 丁 米刊	理论值	宝测值	误差/	主要碎片离子(m/z)	类别	」「」
				天主	建心և	大肉田	$\times 10^{-6}$			/四
17	7.52	鸟嘌呤	$C_5H_5N_5O$	$[M+H]^+$	152.056 68	152.056 52	4.10	152. 056 5 148. 973 3 132. 958 1	含氮类	d
18	8.47	苯丙氨酸	$\mathrm{C_9H_{11}NO_2}$	$[M+H]^+$	166.086 25	166.086 18	-3.75	166. 086 1 149. 940 5 141. 049 3	含氮类	d
10	0.07	日本書	ан <u>а</u>		107 044 44	107 044 04	a 10	120. 080 9,103. 054 5		
19	9.27	<u> </u>	$C_9H_{10}O_5$	[M−H] [−]	197.044 44	197.044 94	2.49	197. 044 8 179. 034 1 135. 044 0	有机酸	с
20	9.56	原儿茶酸	C-H-O	[M_H] ⁻	153,018,23	153,018,46	1.47	153 018 2 109 028 2	有机酸	h.c
20	10 61	hexa-2 4-diene-	C.H.O.	[M-H] ⁺	143 033 88	143 033 89	-3.80	143 033 8 137 029 3 121 966 3	有机酸	d d
21	10.01	dojoc acid	0611604	[M+H]	115.055.00	115.055.05	5.00	118, 967 8, 116, 966 0	11 DUEX	u
22	12.83	D-色氨酸	C ₁₁ H ₁₂ N ₂ O ₂	[M+H]⁺	205.097 15	205.096 82	2.24	205. 987 4, 188. 070 3, 163. 976 9,	含氮类	d
			11 12 2 2	[]				149. 023 3 146. 059 8		
23	12.84	对羟基苯甲酸	$C_7H_6O_3$	[M-H] ⁻	137.023 32	137.023 42	0.73	137. 023 3 136. 861 8 93. 033 3	有机酸	b 、
										c `q
24	13.90	黄芪碱 E	${\rm C}_{14}{\rm H}_{16}{\rm N}_{2}{\rm O}_{5}$	$[M+H]^+$	293.113 19	293. 112 92	1.76	293. 112 3 247. 107 3 182. 081 0	含氮类	d
								165. 054 4 136. 075 5		
25	14.87	山柰酚-3-0-芸香	${\rm C}_{27}{\rm H}_{30}{\rm O}_{15}$	$[M+H]^+$	595.16574	595. 165 41	-1.49	595. 163 5 415. 101 3 397. 090 5	黄酮	d
		糖苷						313. 070 2 283. 059 6		
26	15.82	香草酸	$C_8H_8O_4$	[M-H] ⁻	167.033 88	167.034 15	1.59	167. 034 1 123. 044 2	有机酸	c `q
27	15.84	异鼠李素-3-0-新	${\rm C}_{28}{\rm H}_{32}{\rm O}_{16}$	$[M+H]^+$	625.176 31	625.175 90	-1.54	-	黄酮	d
•	16.40	橙皮苷	6 H 0		252 006 50	252 005 06	2.26			,
28	16.42	绿原酸切	$C_{16}H_{18}O_9$	LM−HJ [−]	353.086 70	353.087 86	3.26	353. 088 2, 191. 055 3, 192. 058 6,	有机酸	b,
29	17 37	边料木苷	C., H., O.,	[M+U]+	433 112 92	433 112 58	-2.06	433 112 4 415 102 0 379 080 7	昔酮	d d
2)	17.57		0211120010	[M+H]	155.112 72	155.112.50	2.00	313, 070 1, 283, 059 8	111 22	u
30	17.43	隐绿原酸1)	C ₁₆ H ₁₈ O ₉	[М-Н]-	353.086 70	353.088 10	3.69	353. 087 6, 191. 055 3, 179. 034 1,	有机酸	b
		10	10 10 9	[173. 044 6 135. 044 0		
31	17.64	咖啡酸1)	$C_9H_8O_4$	$[M+H]^+$	179.033 88	179.034 26	-0.42	179.034 2,136.047 4,135.044 1	有机酸	ь,
										c 、d
32	20.77	香草醛	$\mathrm{C_8H_8O_3}$	$[M-H]^{-}$	151.038 97	151.039 12	0.99	151.038 9,136.015 4	香豆素	b
33	20.94	维生素 B ₂	${\rm C}_{17}{\rm H}_{20}{\rm N}_{4}{\rm O}_{6}$	$[M+H]^+$	377.145 56	377.145 11	-2.65	377. 144 7 318. 919 3 243. 087 2	含氮类	d
34	21.57	(E) -4-[5-(hyd-	$\mathrm{C_9H_{10}O_3}$	$[M-H]^-$	165.054 62	165.054 89	1.63	165. 054 7 147. 044 0 121. 028 3	有机酸	с
		roxymethy)-2-fura-						119.049 0		
		nyl]-3-butene-2-one							11	
35	22.47	红车轴卓素-7-0-	$C_{22}H_{22}O_{11}$	[M-H] ⁻	461.107 83	461. 109 41	2.22	461. 109 8 299. 056 0 284. 032 5	黄酮	d
26	22.27	匍甸糖苷 2) お甘() // 一	C II O	[] -	475 102 49	475 104 07	2 12	415 102 1 252 050 2 244 076 7	基酮	,
30	23.21	3- <u></u> 2 - <u></u> 2	$C_{23}H_{24}O_{11}$	[M−H]	4/5. 125 48	4/5.124 9/	3.12	415. 103 1,253. 050 2,244. 9/6 /	臾 卿	a
		南萄糖苷								
37	23.63	舟酚酸 F	C., H., O.	[М-Н]-	313.070 66	313.072.08	4. 52	313.0714,269.0814,159.0441	有机酸	с
			-1/ 14 - 6					109. 028 2		
38	23.75	紫云英苷	$C_{21}H_{20}O_{11}$	[M+H]⁺	449. 107 83	449.107 60	-0.53	-	黄酮	p`q
39	24.51	东莨菪内酯	$C_{10}H_{8}O_{4}$	[M+H] ⁺	193.049 53	193.049 39	-0.75	193. 049 3 171. 989 1 150. 968 6	香豆素	b
								132. 958 1,109. 989 2		
40	25.07	阿魏酸1)	$\mathrm{C}_{10}\mathrm{H}_{10}\mathrm{O}_4$	[M-H] ⁻	193.049 53	193.049 91	1.94	193. 049 9 178. 026 3 149. 059 7	有机酸	ь,
								134. 036 2		c d

续表1

				肉乙	相对分子质量(m/z)					
No.	t _R ∕min	成分	化学式	离丁 类型	理论值	实测值	误差/ ×10 ⁻⁶	主要碎片离子(m/z)	类别	」属
41	26.56	毛蕊异黄酮葡萄 # 母 ¹⁾	$C_{22}H_{22}O_{10}$	[M+H] ⁺	447. 128 57	447. 127 72	-1.91	285. 075 3 ,270. 051 7 ,253. 048 7 , 225. 054 2	黄酮	d
42	26. 98	原儿茶醛	$C_7H_6O_3$	「м−н]⁻	137.023 32	137.023 42	0.73	137. 023 3 94. 036 6 93. 033 3	有机酸	с
43	27.86	芳香膜菊素-7-0- 葡萄糖苷	$C_{23}H_{24}O_{11}$	[M+H] ⁺	477. 139 13	477. 138 70	-0. 92	437. 863 4 378. 851 2 322. 915 6 315. 085 6 300. 062 2	黄酮	d
44	29.31	芹菜素	C ₁₅ H ₁₀ O ₅	[M+H]⁺	271.060 09	271.05978	-3.20	290. 947 6 271. 059 7 253. 133 2	黄酮	d
45	30. 34	3-hydro-9-MP-Hex- Hex	$-C_{28}H_{34}O_{15}$	[M-H] ⁻	609. 181 39	609. 182 86	1.50	-	黄酮	d
46	30. 52	异迷迭香酸苷	${\rm C}_{24}{\rm H}_{26}{\rm O}_{13}$	[M-H] ⁻	521. 128 96	521. 130 43	2. 81	359. 076 8、323. 077 1、197. 044 8、 179. 034 2、161. 023 4	有机酸	с
47	31.57	丹酚酸 G	$C_{18}H_{12}O_7$	[M-H] ⁻	339.049 92	339.051 18	3.14	339. 050 9 295. 061 0 185. 023 7 109. 028 3	有机酸	с
48	32. 24	红车轴草素	$C_{16}H_{12}O_{6}$	[M+H] ⁺	301.070 66	301.070 19	-1.58	301. 069 9 \286. 046 6 \276. 908 6 \ 241. 048 6	黄酮	d
49	32.65	6"-0-丙二酰基芒 柄花苷	${\rm C}_{25}{\rm H}_{24}{\rm O}_{12}$	[M-H] ⁻	515. 118 40	515. 119 87	2.85	353. 087 5 191. 055 2 179. 034 0 161. 023 5	黄酮	d
50	33. 15	丹酚酸 D	$C_{20}H_{18}O_{10}$	[M-H] ⁻	417.081 62	417.083 34	4.12	417. 082 4 197. 044 8 175. 039 2 135. 044 0 72. 991 8	有机酸	с
51	33. 55	1-羟基松脂醇-1- <i>0-β</i> -D-葡糖苷	$C_{26}H_{32}O_{12}$	[M-H] ⁻	535. 181 00	535. 182 43	2.67	373. 092 0 355. 119 2 295. 097 6 179. 034 2 135. 044 1	有机酸	с
52	34. 34	3-hydro-9-MP-Hex	$C_{22}H_{24}O_{10}$	[M-H] ⁻	447. 128 57	447. 130 16	2.32	-	黄酮	d
53	36.90	迷迭香酸1)	$C_{18}H_{16}O_8$	[M-H] ⁻	359.076 14	359.077 58	4.00	359. 076 9 197. 044 9 179. 034 1 161. 023 5 135. 044 1	有机酸	с
54	38.08	6"-0-丙二酰基毛 蕊异黄酮葡萄糖苷	${\rm C}_{26}{\rm H}_{26}{\rm O}_{14}$	[M+H] ⁺	563. 139 53	563. 139 34	-0.34	-	黄酮	d
55	40.35	芒柄花苷	$C_{22}H_{22}O_9$	[M+H] ⁺	431. 133 65	433. 133 27	-1.81	269.080 5	黄酮	d
56	41. 54	黄芩素	$C_{15}H_{10}O_5$	[M+H] ⁺	271.060 09	271.059 60	-3.87	290. 947 1 \271. 058 6 \248. 898 8 \ 207. 101 2 \116. 986 0	黄酮	d
57	42.23	6,4'-二甲氧基异 黄酮-7-0-葡萄糖苷	${\rm C}_{23}{\rm H}_{24}{\rm O}_{10}$	[M+H]*	461. 144 23	461. 143 83	-0.85	466. 534 5 299. 090 9 275. 900 7	黄酮	d
58	43.24	大黄酚	$C_{15}H_{10}O_4$	[M+H] ⁺	255.065 18	255.064 87	-1.24	255. 064 6 \250. 893 5 \209. 981 8 \ 191. 971 2	有机酸	b
59	43.38	6"-O-乙酰基毛蕊 异黄酮葡萄糖苷	${\rm C}_{24}{\rm H}_{24}{\rm O}_{11}$	[M+H] ⁺	489. 139 13	489.138 70	-0.90	285. 075 3 270. 051 3 253. 048 7	黄酮	d
60	43. 55	甘草素	$C_{15}H_{12}O_4$	[M-H] ⁻	255.065 18	255.066 13	1.55	255. 066 1 153. 108 2 135. 007 6 119. 049 0 91. 017 7	黄酮	d
61	44.33	丹酚酸 B ¹⁾	${\rm C}_{36}{\rm H}_{30}{\rm O}_{16}$	[M-H] ⁻	717. 145 01	717. 144 41	-0.84	519. 093 4 339. 050 8 321. 040 3 295. 061 1	有机酸	с
62	45.74	3-hydro-9,10-diMP Pen-Hex	$-C_{28}H_{34}O_{14}$	[M+H] ⁺	595.202 13	595.20172	-1.61	247. 096 7 209. 080 8 191. 070 4 167. 070 2	黄酮	d
63	45. 99	3-羟基-9,10-二甲 氧基紫檀烷	⁴ C ₁₇ H ₁₆ O ₅	[M+H]*	301. 107 05	301. 106 72	-2.92	301. 106 7、269. 080 4、191. 070 2、 167. 070 2、147. 043 9	黄酮	d
64	46.03	9,10-二甲氧基 紫檀烷-3-0-β-D-葡 萄糖苷	$C_{23}H_{26}O_{10}$	[M+H] ⁺	463. 150 87	463. 159 42	-0.98	464. 622 4 \300. 098 7 \285. 075 2 \ 167. 070 2	黄酮	d

1-1	L
4.4	L 1
431.7	
ンズム	x I

				南子	相对分	▶子质量(<i>m/z</i>)			
No.	$t_{\rm R}/\min$	成分	化学式	两 J 类型	理论值	实测值	误差/	主要碎片离子(m/z)	类别	」属
65	46.28	rhamnocitrin-Hey-	C. H. O.	[M.II]+	549 123 88	549 123 60	$\times 10^{-6}$	565 908 8 318 919 5 301 070 1	昔酮	
05	40.20	malonate	0251124 014	[M+U]	549.125 00	549.125 00	1.52	276. 909 5	PC III)	u
66	48.85	瑟丹酸	$C_{12}H_{18}O_3$	[M+H]⁺	211. 132 87	211. 132 68	-0.91	205. 987 4 181. 987 4 163. 976 9	有机酸	b
								145.966 3		
67	48.94	迷迭香酸甲酯	$\mathrm{C_{19}H_{18}O_8}$	[M-H] ⁻	373.091 79	373.093 05	3.37	329. 284 6,179. 034 2,135. 043 9	有机酸	с
68	49.07	毛蕊异黄酮	$\mathrm{C_{16}H_{12}O_5}$	$[M+H]^+$	285.07575	285.075 29	-1.61	285. 075 2 270. 051 7 253. 049 1	黄酮	d
								225. 054 2 137. 023 0		
69	49.99	7,2'-二羟基-3',4'-	$C_{23}H_{28}O_{10}$	[M-H] ⁻	463. 159 87	463.161 56	2.46	301. 108 0 286. 084 6 135. 044 0	黄酮	d
		二甲氧基异黄烷匍						121.028 3		
70	51 11	町 r 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田 田	C., H., O.,	[M_H]-	717 145 01	717 146 00	0.61	519 092 9 339 050 7 321 040 2	有机酸	e
10	51.11		0361130 016	[M-U]	/1/.110.01	/1/.110.00	0.01	295. 060 9, 185. 023 6	11 D LHX	U
71	51.36	丹酚酸 A	$C_{26}H_{22}O_{10}$	[M−H] [−]	493. 112 92	493. 114 69	2.47	313. 071 5 295. 061 0 203. 034 3	有机酸	с
								185.023 6,159.044 1,135.044 0,		
								109.028 2		
72	51.89	丹参二醇 B	$\mathrm{C_{18}H_{16}O_5}$	$[M+H]^+$	313.107 05	313.106 60	-1.44	313. 106 8 295. 095 9 267. 101 1	二萜	с
	52.20	***	а н о	c	215 006 21	215 005 01	1 00	249. 090 5 221. 095 8		,
73	52.29	方否限匊系	$C_{17}H_{14}O_6$	[M+H]⁺	315.086 31	315.085 91	-1.28	315. 085 6 300. 062 2 2/4. 893 0	茰駉	d
74	53.41	异欧前胡素	С., Н., О.	[M+H]+	271, 096, 48	271 095 29	-2.09	230. 895 0	香豆素	с
	00111	91 9 (1119) 44	0161114 04		2,110,0010	2711 070 27	2.07	151. 038 9 116. 986 1		Ũ
75	56. 94	丹酚酸 C	$C_{26}H_{20}O_{10}$	[M-H] ⁻	491.097 27	491.098 97	2.34	491. 100 2 311. 055 8 293. 045 7	有机酸	с
								265. 050 0 135. 044 1		
76	57.43	大黄素	$\mathrm{C_{15}H_{10}O_5}$	$[M+H]^+$	271.060 09	271.059 81	-3.09	V271.059 5 248.898 9 153.017 9	蒽醌	d
		그 편 더 생 다 신다.						116. 986 0	44. 277	
77	58.08	乙酰异微凸剑叶	$C_{25}H_{30}O_{11}$	[M-H] ⁻	505. 170 44	505. 172 09	2.18	301. 108 0 286. 085 2 135. 044 1	茰駉	d
78	58 27	沙時匍甸塘甘 dihydroxy-trime-	СН. О.	[M,U]+	317 101 96	317 101 78	-0.58	121. 028 3 317 101 7 274 893 2 250 893 7	昔酮	d
70	50.27	thoxy DHIF	017111606	[M+n]	517.101 90	517.101 70	0.50	163. 038 8,135. 044 0	PC III)	u
79	58.41	子 丹参二醇 C	$C_{18}H_{16}O_5$	[M+H]⁺	313.107 05	313. 106 75	-0.96	313. 106 5 295. 096 1 267. 101 2	二萜	с
								249. 090 7 221. 095 9		
80	58.58	4,7-二羟基-3-丁	$\mathrm{C}_{12}\mathrm{H}_{14}\mathrm{O}_4$	[M-H] ⁻	221.080 83	221.081 63	3. 59	177. 091 2,154. 991 6,148. 051 9,	苯酞	b
		基苯酞						134. 036 2		
81	59.39	6"-O-乙酰基芒柄	$C_{24}H_{24}O_{10}$	[M+H] ⁺	473. 144 22	473.144 01	-0.45	270. 083 7 269. 080 4	黄酮	d
82	60 64	化甘 阿釉硷枞粒酯	сно	[M 11] -	355 117 61	355 118 87	3 54	355 110 5 311 128 8 206 105 3	右机硷	h
02	00.04	門或地的文化口的目	$C_{20} R_{20} O_6$	[M−H]	555.117 01	555.110.07	5.54	281 081 9 159 044 4	伯伯的	D
83	60.70	山柰素	C ₁₆ H ₁₂ O ₆	[М-Н]-	299.055 01	299.056 21	2.16	299. 056 1,284. 032 5,259. 001 7	黄酮	d
			10 12 0	L]				238. 993 7 217. 002 6		
84	60. 95	9,10-diMP-3-0-	${\rm C}_{25}{\rm H}_{28}{\rm O}_{11}$	[M+H] ⁺	505. 170 43	505. 169 98	-1.99	482. 771 1 301. 106 0 285. 075 5	黄酮	d
		acetyl-Glc						167.070 2		
			a	_	400	100	-		-14- 221	
85	61.13	」	$C_{12}H_{12}O_2$	[M+H] ⁺	189.091 00	189.09084	-0.90	189. 090 8 171. 080 2 161. 095 7	本欧	b
								147.043 8,133.028 3		

续表	续表1											
				肉乙	相对分	▶子质量(m/z)			ı 🖂		
No.	t _R ∕min	成分	化学式	两 J 类型	理论值	实测值	误差/ ×10 ⁻⁶	- 主要碎片离子(m/z)	类别	属		
86	61.24	7-羟基-6,4'-二甲 氨基异黄酮	$C_{17}H_{14}O_5$	[M+H]*	299. 091 40	299. 091 13	-2.74	299. 090 8 275. 901 9 251. 894 5 233 890 9 173 984 8	黄酮	d		
87	61.51	黄芪皂苷 V	$\rm C_{47}H_{78}O_{19}$	[M-H] ⁻	945. 505 35	945. 506 23	0.34	945. 501 5 \783. 448 0 \113. 023 1 \	三萜皂苷	d		
88	61.60	正丁基苯酞	$C_{12}H_{14}O_2$	[M+H] ⁺	191. 106 65	191. 106 43	-1.18	191. 106 4 173. 095 9 163. 111 5 149. 059 6 145. 101 1 135. 044 0 105. 070 2 91. 054 7	苯酞	b		
89	61.65	洋川芎内酯 G	$C_{12}H_{16}O_3$	[M-H] ⁻	207. 101 57	207.102 20	3.04	207. 102 0、164. 115 3、163. 111 9、 161. 096 2	苯酞	b		
90	63.01	黄芪皂苷Ⅲ	C41H68O14	[M+H] ⁺	785.468 18	785.467 22	-1.92	-	三萜皂苷	d		
91	63.53	甘西鼠尾草酸甲	$C_{18}H_{14}O_8$	[M-H] ⁻	357.060 49	357.061 89	3.91	357. 061 2 225. 055 1 181. 065 0 121. 028 3	有机酸	с		
92	64. 12	芒柄花素	${\rm C}_{16}{\rm H}_{12}{\rm O}_4$	$[M+H]^+$	269.080 83	269.080 26	-2.14	269. 080 4 \254. 056 7 \237. 054 1 \ 213. 090 6	黄酮	d		
93	64. 65	黄芪皂苷Ⅶ	$\rm C_{47} H_{78} O_{19}$	[M-H] ⁻	945. 505 35	945. 505 80	-0.11	945. 506 7 783. 456 4 161. 044 6 113. 023 2	三萜皂苷	d		
94	65.06	10-羟基-3,9-二甲 氧基紫檀烷	$C_{17}H_{16}O_5$	$[M+H]^+$	301. 107 05	301. 106 57	-3.42	301. 106 5、269. 080 5、191. 070 1、 167. 070 1、147. 043 9	黄酮	d		
95	65. 74	丹参醇 A	$C_{18}H_{12}O_{4}$	$[M+H]^+$	293. 080 83	293. 080 51	-0.33	293. 080 4 249. 090 7 234. 067 7 219. 080 3 193. 101 1	二萜	с		
96	66.16	异黄芪皂苷Ⅱ	C43H70O15	[М-Н]-	825.463 09	825.464 66	1.23	=	三萜皂苷	d		
97	66.60	7,2'-二羟基-3',	C ₁₇ H ₁₈ O ₅	[M+H] ⁺	303. 122 70	303. 122 31	-3.10	193.0857,167.0702,161.0597,	黄酮	d		
		4'-二甲氧基异黄烷	17 10 5	[]				133.064 8,123.044 2				
98	66.66	黄芪甲苷	$C_{41}H_{68}O_{14}$	[M-H] ⁻	783.452 53	783.453 86	0. 99	783. 452 9 489. 358 8 401. 304 4	三萜皂苷	d		
99	66. 85	3-羟基亚甲基丹 参醌	$C_{18}H_{14}O_4$	[M+H] ⁺	295.09648	295.096 13	-1.21	295. 095 8 277. 085 4 267. 101 2 253. 085 4 249. 090 6 231. 899 3 221. 095 8	二萜	с		
100	68.16	洋川芎内酯 B	$C_{12}H_{12}O_3$	[M-H] ⁻	203. 070 27	203. 070 89	3.05	204. 074 0 203. 070 7 174. 031 4 160. 015 6	苯酞	Ь		
101	69.40	黄芪皂苷Ⅱ	$\rm C_{43}H_{70}O_{15}$	[M+H] ⁺	827.47874	827. 476 93	-2.86	-	三萜皂苷	d		
102	69.47	沙尔威酮	$\mathrm{C}_{19}\mathrm{H}_{19}\mathrm{NO}_2$	$[M+H]^+$	294. 148 85	294. 148 35	-1.72	294. 148 4 277. 085 5 248. 898 6 229. 904 0	含氮类	с		
103	69. 70	黄芪皂苷Ⅶ	$\rm C_{47}H_{76}O_{17}$	[M-H] ⁻	911. 499 87	911. 511 35	0.38	911. 499 5 584. 555 8 205. 071 1 131. 033 9 113. 023 2	三萜皂苷	d		
104	69. 77	大豆皂苷I	$\rm C_{48}H_{78}O_{18}$	[M-H] ⁻	941. 510 44	941. 511 35	0.38	941. 511 1 466. 746 5 316. 172 1 205. 071 0 113. 023 2	三萜皂苷	d		
105	69.86	降丹参醌	${\rm C}_{17}{\rm H}_{12}{\rm O}_4$	$[M+H]^+$	281.080 83	281.080 38	-1.62	281. 080 4 ,253. 085 6 ,235. 074 9 , 207. 080 1	二萜	с		
106	70. 47	紫丹参乙素	$C_{18}H_{12}O_4$	$[M+H]^+$	293.080 83	293. 080 51	-1.11	293. 079 9 271. 914 6 249. 090 5 229 904 6 193 110 9	二萜	с		
107	71.26	洋川芎内酯 A	$C_{12}H_{16}O_2$	[M+H] ⁺	193. 122 30	193. 122 09	-1.12	193. 122 1 175. 111 6 147. 111 7 137. 059 6 105. 070 1	苯酞	b		
108	71.31	洋川芎内酯 I 洋川芎内酯 H	$C_{12}H_{16}O_4$	[M-H] ⁻	223. 096 48	223.097 20	3.20	223. 133 1 (195. 138 3 (179. 106 9) 166. 062 5 161. 096 3 151. 111 9	苯酞	b		

续表1

	-			南乙	相对分	▶子质量(m/z)			
No.	$t_{\rm R}/\min$	成分	化学式	呙丁 米刊	理论值	守测估	误差/	- 主要碎片离子(m/z)	类别	归居
				天空	理论但	天侧直	$\times 10^{-6}$			/禹
109	71.57	丹参酮Ⅱ _B	$C_{19}H_{18}O_4$	$[M+H]^+$	311.12778	311.127 35	-1.40	311. 127 0,293. 116 6,275. 106 0,	二萜	с
								251. 106 1, 247. 111 4, 225. 090 9,		
								185.096 0		
110	72.03	紫丹参甲素	$C_{19}H_{18}O_4$	$[M+H]^+$	311.12778	311.127 41	-0.38	311. 127 1,293. 117 4,283. 132 5,	二萜	с
								267. 137 5 252. 114 2		
111	73.78	表丹参螺缩酮内酯	$C_{20}H_{20}O_5$	[M+H] ⁺	341. 138 35	341.138 06	-0.84	341. 137 7 281. 116 7 263. 106 1	二萜	с
								235. 111 3		
112	74.18	<u></u>	$C_{18}H_{16}O_4$	[M-H] ⁻	295.09648	295.09775	4.29	295.0974,277.0872,265.0869	二帖	с
								249.0920,237.0916		
113	74.88	salvianan B	$C_{19}H_{15}NO_2$	[M+H]*	290.117 55	290. 117 25	-1.05	290. 116 6 275. 093 4 262. 119 4	含氮奀	с
								244.112.2	-++=*1.	
114	74.93	4-	$C_{12}H_{14}O_3$	[M−H] [−]	205. 085 92	205.086.50	2.82	205. 086 4 176. 047 1 161. 096 1	本臥	b
115	75 12	已共步 白 北 I	C II O	[] · · ·] +	960 490 21	960 497 13	2 15	149. 095 9,116. 994 6	一式百九	1
115	75.15	开 與 氏 宅 甘 I	C ₄₅ H ₇₂ O ₁₆	[M+H]	809.489.31	809.487 12	-5.15	-	二帕毛甘	a
116	76.03	妥 陵采酸	$C_{30}H_{48}O_5$	[M-H] ⁻	487.341 80	487.343 35	3.18	487. 342 6,469. 332 0	二帖	с
117	76.38	表丹参隐螺内酯	$C_{18}H_{22}O_3$	[M-H]	285. 148 52	285. 149 78	-2.06	285. 150 5 211. 148 7 78. 957 7	二萜	с
118	76.65	异隐丹参酮	$C_{19}H_{20}O_3$	$[M+H]^+$	297.148 52	297.148 22	-1.01	297. 148 0 273. 909 5 253. 158 3	二萜	с
								238. 134 7,211. 111 6		
119	76. 79	轮叶婆婆纳对醌 A	$C_{19}H_{20}O_2$	[M+H] ⁺	281.153 60	281.153 14	-1.66	281. 153 1,266. 129 8,252. 114 1,	二萜	с
								239. 106 2,234. 921 4		
120	76.86	新蛇床内酯	$C_{12}H_{18}O_2$	[M+H] ⁺	195. 137 95	195. 137 59	-1.88	195. 137 8 177. 127 2 149. 132 3	苯酞	b
								125.059 7 79.054 8	I I and	
121	77.28	Z-藁本内酯 ¹⁾	$C_{12}H_{14}O_2$	[M+H] ⁺	191.106 65	191.106 35	-1.60	191. 106 4 173. 095 9 145. 101 0	苯酞	b
		국민사립승패						117.070 0,105.070 1		
122	77.62	业甲基 <u></u> 步 配	$C_{18}H_{14}O_3$	[M+H]⁺	2/9.101 5/	279.101 20	-1.33	279. 101 1,261. 090 5,251. 106 2,	帖	с
100	70 41	白日古画	0 11 0		221 100 20	221 100 27	0.05	233. 095 7 205. 100 9	→ #:	
123	/8.41	虱尾早盼	$C_{20}H_{26}O_4$	[M+H]⁺	331. 190 38	331. 190 37	-0.05	331. 189 9 313. 181 2 285. 184 3	—• 呃	с
124	79 (2)	四与日 夕 配 I	C II O	[] · · ·] +	201 117 22	201 117 00	2.74	235. 093 6,165. 054 8	一北	
124	/8.02	四氢汀 参 酮 1	$C_{18}H_{16}O_3$	[M+H]	281.117 22	281.117.00	-2.74	281. 110 0,205. 100 5,252. 952 0, 1		с
125	78 00	些丹矣茈融	СНО	[M,II]+	273 184 90	273 184 75	-0.57	273 184 6 250 803 7 100 111 6	一茬	0
125	70. 90	家门梦帕眬	018112402	[M+H]	275.104.70	275.10475	0.57	171 080 2 147 080 3	1 11	U
126	79, 40	丹参新醌乙	C ₁₀ H ₁₄ O ₂	[M+H] ⁺	281, 117 22	281, 117,00	-0.79	281, 116 9, 263, 106 3, 235, 111 5.	二萜	с
127	80.27	新隐丹参酮	$C_{18}H_{16}O_3$		313 143 43	313 144 81	4 39	313 144 5 295 133 7 283 133 9	一萜	c
127	00.27	初165713000	C ₁₉ 11 ₂₂ O ₄	[М-Н]	515. 145 45	515. 144 01	ч. 57	255 138 8	1 11	t
128	80, 49	马尾柴酸	C ₂₀ H ₄₀ O ₅	[М-Н]-	487.341.80	487, 343, 38	3.24	487, 342 6, 446, 981 6, 322, 991 2	三萜	с
129	80.83	microstegial	C., H., O.		299 200 55	299 200 44	-0.39	299 199 9 257 153 1 229 122 0	一萜	e
12)	00.05	interostegior	020112602	[M+H]	277.200.33	277.200 44	0.57	187 075 0		C
130	81, 21	丹参酸甲酯	C _m H ₁₀ O ₅	[M+H]+	339, 122, 70	339, 122, 47	-0.68	339, 122 5, 279, 101 2, 261, 090 7,	有机酸	с
			-2018 - 5					233.095 8	13 0 6 6 6	
131	82.33	丹参螺缩酮内酯	C ₁₇ H ₁₆ O ₃	[M+H]⁺	269.117 22	269. 116 91	-1.16	269. 116 7 251. 106 1 223. 111 4	二萜	с
			17 10 - 5	L				195. 116 6		
132	84.20	隐丹参酮	$C_{19}H_{20}O_3$	[M+H]⁺	297. 148 52	297. 148 01	-1.72	297. 148 1 279. 137 5 251. 142 8	二萜	с
			20 2					237. 090 5		
133	84.43	川芎哚	$C_{16}H_{12}N_2O_2$	[M-H] ⁻	263.081 50	263.082 70	4.55	263. 082 5,242. 985 3,233. 084 1	含氮类	b

杨柯楠等:基于 UPLC-Q-Exactive Orbitrap-MS 和网络药理学的川蛭通络胶囊化学成分及作用机制研究

续表	₹1									
				卤乙	相对分	▶子质量(<i>m/z</i>)			ılə
No.	t _R ∕min	成分	化学式	类型	理论值	实测值	误差/ ×10 ⁻⁶	主要碎片离子(m/z)	类别	属
134	84. 87	丹参酮I	C ₁₈ H ₁₂ O ₃	[M+H] ⁺	277.085 92	277.085 69	-0.83	277.0855,249.0906,231.0803,	二萜	c
				2 3				221. 096 1,193. 101 0		
135	85.33	叶酸	$C_{19}H_{19}N_7O_6$	$[M+H]^+$	442. 146 95	442.14719	0.53	-	含氮	p`q
136	85.91	柳杉酚	$C_{20}H_{28}O_2$	[M+H] ⁺	301.216 20	301.215 94	-0.89	301. 215 7 259. 168 8 213. 127 1	二萜	с
								163. 075 3 123. 116 9		
137	85.96	亚麻酸	$C_{18}H_{30}O_2$	$[M+H]^+$	279. 231 85	279.231 57	-2.99	279. 231 5,261. 220 6,95. 086 0,	有机酸	d
								81.070 5		
138	85.98	3-羟基-9,11-十	$C_{18}H_{32}O_3$	[M-H] ⁻	295. 226 77	295.228 03	2.41	295. 227 7 277. 217 1 195. 138 3	有机酸	d
		八碳烯酸						171.101 8		
139	86.92	4-methylenem-iltirone	$\mathrm{C}_{18}\mathrm{H}_{18}\mathrm{O}_2$	$[M-H]^-$	265.122 30	265.123 47	4.39	265. 123 2 244. 983 3 96. 958 7	二萜	с
140	87.06	celephthalide A	$\mathrm{C}_{18}\mathrm{H}_{24}\mathrm{O}_{8}$	$[M+H]^+$	369. 154 39	369.154 17	-0.61	-	苯酞	b
141	87.41	二氢丹参酮 I	$\mathrm{C}_{18}\mathrm{H}_{14}\mathrm{O}_3$	$[M+H]^+$	279.101 57	279.10117	-1.44	279. 101 0 261. 090 6 233. 095 8	二萜	е
								205. 100 9		
142	87.92	2α-羟基熊果酸	$\mathrm{C}_{30}\mathrm{H}_{48}\mathrm{O}_4$	[M-H] ⁻	471.346 88	471.348 36	3.13	471. 347 8	三萜	с
143	88.83	去氢丹参酮 Ⅱ _A	$C_{19}H_{16}O_3$	$[M+H]^+$	293. 117 22	293.116 85	-1.16	293. 116 6,275. 106 2,247. 111 4	二萜	с
144	89.23	丹参隐螺内酯	$C_{18}H_{22}O_3$	[M+H] ⁺	287.164 17	287. 163 91	-0.91	287. 163 6 269. 153 1 231. 101 1	二萜	с
								199. 074 9		
145	90.23	montbretol	$C_{20}H_{26}O_{3}$	$[M+H]^+$	315. 195 47	315. 195 34	-0.42	315. 195 0 297. 184 3 274. 893 6	二萜	с
								250. 893 6,245. 116 9		
146	91.26	去氢丹参新酮	${\rm C}_{19}{\rm H}_{20}{\rm O}_2$	$[M+H]^+$	281.153 60	281.153 50	-0.38	281. 153 2 266. 129 6 253. 158 4	二萜	е
								234. 921 4,221. 096 0		
147	92.03	wallichilide	${\rm C}_{25}{\rm H}_{32}{\rm O}_5$	$[M+H]^+$	413. 232 25	413.232 33	0.19	_	苯酞	b
148	92.31	丹参酮 Ⅱ _A ¹⁾	$C_{19}H_{18}O_3$	$[M+H]^+$	295. 132 87	295.132 57	-1.02	295. 132 5 280. 108 9 277. 122 0	二萜	е
								266. 093 2 249. 127 1 235. 0754		
149	93.22	欧当归内酯 A ¹⁾	$\mathrm{C}_{24}\mathrm{H}_{28}\mathrm{O}_4$	$[M+H]^+$	381.206 03	381.205 75	-0.75	381. 206 0 191. 106 5 149. 059 8	苯酞	\mathbf{b}
								135.044 0		
150	94.03	脱氧基新隐丹参酮	$C_{19}H_{22}O_3$	$[M+H]^+$	299.164 17	300. 163 79	-1.27	299. 163 2 281. 153 1 269. 153 5	二萜	с
								253. 158 4, 183. 080 3		
151	94.81	丹参新酮	$C_{19}H_{22}O_2$	$[M+H]^+$	283. 169 25	283. 168 95	-1.08	283. 168 9 265. 158 3 241. 121 6	二萜	с
		다. 스. 카시						237. 163 3 223. 111 6		
152	97.95	廾 参素钠	$C_9H_{11}NaO_5$	$[M+H]^+$	223.057 69	223.057 95	1.15	-	有机酸	с

注:¹⁾经对照品比对;Glc. 葡萄糖;Hex. 正己烷;Pen. 聚萘二甲酸乙二醇酯。a. 水蛭;b. 川芎;c. 丹参;d. 黄芪(表2同)。

3.2 结构解析

采用 UPLC-Q-Exactive Orbitrap MS 技术并依据 质谱裂解规律与文献检索的方法,在川蛭通络胶囊 中共鉴定得到 152 个化合物,主要为有机酸类、黄酮 及其苷类、二萜类、苯酞类等成分,根据化合物类别 对部分典型峰的质谱数据进行了解析。

3.2.1 川蛭通络胶囊胶囊中有机酸类成分鉴定 在川蛭通络胶囊中共鉴定出了 32 个有机酸类成 分,主要来源于药材丹参,丹参有机酸成分为丹参 的主要水溶性药效成分,如丹酚酸 B、丹酚酸 A、绿 原酸、隐绿原酸、咖啡酸、迷迭香酸、阿魏酸等,具 有良好的氧化、抗炎、抗癌等生物活性^[10],有机酸 化合物分子常以丹参素和咖啡酸为结构单元,形 成不同的二聚体、三聚体、四聚体、盐类衍生物 等^[11],在质谱碎片中常见咖啡酸的碎片离子以及 特征碎片小分子基团 COOH,该类化合物在负离 子模式下响应值较高。以峰 61 为例,在负离子模 式下,在一级质谱中显示准分子离子峰为 *m/z* 717.144 41[M-H]⁻,元素组成为 C₃₆H₃₀O₁₆(质量误 差-0.86×10⁻⁶),主要的二级质谱离子碎片为 *m/z* 5225 519.093 4、339.050 8、321.040 3、295.061 1,其中相对 丰度最高的碎片离子为 m/z 321.040 3,是基本母核 脱去2个C₉H₁₀O₅分子,形成[M-H-2C₉H₁₀O₅]⁻的离 子碎片,经分析和对照品比对,确认峰 61 为丹酚酸 B,结合文献[12-13]和特征离子碎片推测其可能的裂 解途径见图 2。

图 2 丹酚酸 B 的 MS² 图 Fig. 2 MS² of salvianolic acid B

峰40 为丹参、川芎、黄芪的共有峰,在负离子模 式下,在一级质谱中显示准分子离子峰为 m/z 193.049 91 [M-H]⁻,元素组成为 C₁₀H₁₀O₄(质量误 差 1.94×10⁻⁶),主要的二级质谱离子碎片为 m/z 193.049 9、178.026 3、149.059 7、134.036 2,其中丰 度最高的峰为 m/z 134.036 2,是基本母核脱去 1 分 子 CH₃和 1 分子 COO,形成[M-H-CH₃-COO]⁻的 离子碎片,经分析和对照品比对,确认峰 40 为阿魏 酸,结合文献[14]和特征离子碎片推测其可能的裂 解途径见图 3。

3.2.2 川蛭通络胶囊胶囊中黄酮及其苷类成分鉴 定 在川蛭通络胶囊中共鉴定出了 35 个黄酮及其 苷类成分,主要来源于药材黄芪,黄酮类化合物泛指 由 C₆-C₃-C₆ 单位组成的化合物,根据三碳链的氧化 程度、B 环连接位置及三碳链是否形成环状等特点, 分为二氢黄酮类、黄酮类、异黄酮类、查尔酮类,黄烷 类、花青素类等,黄芪中主要包括4类:黄酮类、异黄 酮类、异黄烷类和紫檀烷类^[15],具有抗炎、抗癌,免 疫调节等生物活性^[16-17]。黄酮及其苷类在正离子 模式下响应值较高,主要通过失去连在环上的取代 5226

图 3 阿魏酸的 MS² 图 Fig. 3 MS² of ferulic acid

基如羟基和甲氧基等、RDA 裂解、脱去糖基以及 CH₃、CO、H₂O和CO,等中性碎片离子为主^[18-20]。 以峰41为例,在正离子模式下,在一级质谱中显示 准分子离子峰为 m/z 447.127 72 [M+H]⁺,元素组成 为 C₂₂H₂₂O₁₀(质量误差-1.91×10⁻⁶),主要的二级质 谱离子碎片为 m/z 285.075 3、270.051 7、253.048 7、 225.054 2、137.023 2,其中丰度最高的峰为 m/z 285.0753,是基本母核脱去1分子葡萄糖,形成 「M+H-Glc]⁺的离子碎片,再失去 B 环上 CH,得到 *m/z* 270.0517 [M+H-Glc-CH₃]⁺,或失去1分子 CH₃OH 得到 *m/z* 253.0487 [M+H-Glc-CH₃OH]⁺, 继续失去 1 分子 CO 得到 m/z 225.054 2 「M+H-Glc-CH₃OH⁺,或经过 RDA 裂解生成特征碎片 m/z 137.023 2,经分析和对照品比对,确认峰 41 为毛蕊 异黄酮葡萄糖苷,结合文献[21]和特征离子碎片推 测其可能的裂解途径见图 4。

3.2.3 川蛭通络胶囊中二萜类成分鉴定 在川蛭 通络胶囊中共鉴定出 33 个二萜类,全部来源于药材 丹参,主要为邻醌型丹参酮类和对醌型罗列酮类化 合物以及酯类化合物^[22],具有抗菌、抗炎、抗肿瘤等 生物活性^[23-25]。此类化合物在正离子模式下响应 值较高,大多数丹参中的二萜醌类,均具有[2M+ Na]⁺的二聚体,主要丢失 H₂O、CH₃和 CO等中性分 子^[26]。其中邻醌型的丹参酮类又可分为有无羟基 取代基两类,带有羟基的化合物易在质谱中连续丢 失 2 分子水^[27],例如丹参酮 Ⅱ_B在正离子模式下会 产生 275.106 0[M-H-2H₂O]⁺碎片。以峰 148 为

图 4 毛蕊异黄酮葡萄糖苷的 MS² 图 Fig. 4 MS² of calycosin-O-glucopyranoside acid

例,在正离子模式下,一级质谱中显示准分子离子峰 为 m/z 295.132 57 [M+H]⁺,元素组成为 C₁₉H₁₈O₃ (质量误差-1.02×10⁻⁶),主要的二级质谱离子碎片 为 m/z 295.132 5、280.108 9、277.122 0、266.093 2、 249.127 1、235.075 4,其中丰度最高的峰为 m/z 295.132 5,为准离子峰,碎片离子 m/z 280.108 9 是 该化合物在正离子模式下丢失了 1 分子 CH₃ 所形 成的[M+H-CH₃]⁺,碎片离子 m/z 277.122 0 可能 是由于基本母核脱去 1 分子 H₂O 所形成的[M+H-H₂O]⁺,进一步脱去 1 分子 CO 得到 m/z 249.127 1 [M+H-H₂O-CO]⁺,经分析和对照品比对,确认峰 148 为丹参酮 II_A,结合文献[28]和特征离子碎片推 测其可能的裂解途径见图 5。

峰 122 中准分子离子峰为 m/z 279.101 1,元素 组成为 C₁₈H₁₄O₃(质量误差-1.33×10⁻⁶)同时也存在 m/z 261.090 5、251.106 2、233.095 7、205.100 9 等碎 片离子, m/z 251.106 2 是由基本母核失去 1 分子 CO;m/z 261.090 5 的碎片是由基本母核脱去 1 分 子 H₂O,进一步丢失 1 分子 CO 得到 m/z 233.095 7, 再丢失 1 分子 CO 得到 m/z 205.100 9。结合文献 [28]报道根据其裂解规律推断此化合物为亚甲基 丹参醌,二级质谱图见图 6。

图 6 亚甲基丹参醌的 MS² 图 Fig. 6 MS² of methylenetanshinguinone

3.2.4 川蛭通络胶囊中苯酞类成分鉴定 在川蛭 通络胶囊中鉴定出苯酞类成分13个,全部来源于药 材川芎,是川芎内活血化瘀主要活性成分^[29]。苯酞 类化合物包括简单苯酞类和二聚苯酞类两大类,在 二级质谱中易丢失 H₂O、CO、C₂H₄、C₃H₆、C₄H₈等分 子而产生碎片离子[30]。以峰 121 为例,在正离子模 式下,一级质谱中显示准分子离子峰为 *m/z* 191.106 35[M+H]⁺,元素组成为 C₁₂H₁₄O₂(质 量误差-1.6×10⁻⁶),主要的二级质谱离子碎片为 m/z 191. 106 4, 173. 095 9, 163. 111 5, 145. 101 0, 117.070 0、105.070 1,其中丰度最高的峰为 m/z 191.1064[M+H]⁺,为准离子峰,准离子峰丢失1分 子H₂0得到碎片离子 m/z 173.095 9 [M+H-H₂O]⁺,进一步丢失 1 分子 CO 产生 m/z 145.101 0 「M+H-H,O-CO]⁺碎片离子,在此基础上丢失2分 子 CH, 得到 m/z 117.070 0 或丢失 3 分子 CH, 得到 m/z 105.070 1;准分子离子峰丢失 2 分子 CH,得到 5227

m/z 163.1115[M+H-C₂H₄]⁺,经分析和对照品比 对,确认峰 121为Z-藁本内酯,结合文献[31-32]和 特征离子碎片推测其可能的裂解途径见图 7。

图 7 Z-藁本内酯的 MS^2 图

Fig. 7 MS² of Z-ligustilide

峰 149 在正离子模式下,准分子离子峰为 m/z 381.206 0 [M+H]⁺,元素组成为 C₂₄H₂₈O₄ (质量 误差-0.75×10⁻⁶),同时也存在 m/z 191.106 5、 149.059 8、135.044 0 等碎片离子,其中响应值最高 的离子峰为 m/z 191.106 5 [M+H-C₁₂H₁₄O₂]⁺,为苯 酞二聚体裂解为苯酞单体后产生,进一步丢失 3 分 子 CH₂ 得到 m/z 149.059 8 或丢失 4 分子 CH₂ 得到 m/z 135.044 0,经分析和对照品比对,结合文献 [33]和特征离子碎片推测其为欧当归内酯 A,二级 质谱图见图 8。

图 8 欧当归内酯 A 的 MS² 图 Fig. 8 MS² of levistilide A

3.2.5 川蛭通络胶囊中三萜及其皂苷成分鉴定 在川蛭通络胶囊中鉴定出三萜及其皂苷类成分 13 5228

个,三萜酸类成分3个,来源于药材丹参,三萜皂苷 类成分9个,来源于药材黄芪,三萜类成分具有多氢 蒎的五环母核,以游离形式或以糖结合成苷或酯的 形式存在于植物体内,故其质谱裂解规律多为糖苷 键的断裂,裂解过程中可能会丢失1个或多个 H₂O^[34],以峰98为例,在负离子模式下,一级质谱 中显示准分子离子峰为 m/z 783.453 8[M-H]⁻,元 素组成为C₄₁H₆₈O₁₄(质量误差0.99×10⁻⁶),主要的 二级质谱离子碎片为 m/z 489.358 8、401.304 4,准 离子峰丢失1分子木糖和1分子葡萄糖得到 m/z 489.358 8[M-H-Xyl-Glc]⁻黄芪皂苷元碎片,继续 丢失4分子 H₂O和1分子 CH₃得到 401.304 4[M-H-Xyl-Glc-4H₂O-CH₃]离子碎片。结合文献[34-35]和特征离子碎片推测其为黄芪甲苷,二级质谱 图见图9。

图 9 黄芪甲苷的 MS² 图 Fig. 9 MS² of astragaloside A

3.2.6 川蛭通络胶囊中含氮类成分鉴定 在川蛭 通络胶囊中初步鉴定出含氮类成分23个,来源于水 蛭、川芎、丹参、黄芪4味药材,主要属于氨基酸、生 物碱、核苷及嘌呤类,此类物质裂解一般以 N 原子 为中心,沿侧链朝苯环方向逐步丢失取代基,进一步 脱去氨基,有时也可见苯环开裂。生物碱类、核苷类 等含氮化合物,此类化合物质易丢失 H₂O、NH₃、 HCN 或 CONH, 等分子。氨基酸中含有氨基又含有 羧基,容易发生α-裂解掉落氨基或羧基基团,在二 级质谱中易丢失 NH₃、H₂O、CO₂、HCOOH 等分子而 产生碎片离子[35-36]。以峰18为例,在正离子模式下, 一级质谱中显示准分子离子峰为 m/z 166.086 18 [M+H]⁺,元素组成为 C₉H₁₁NO₂(质量误差-3.75× 10⁻⁶),主要的二级质谱离子碎片为 m/z 166.086 1、 149.9405、131.0493、120.0809、103.0545,准离子 峰丢失 NH,和 COOH 后得到碎片离子 m/z 149.9405 [M+H-NH₃]⁺、120.0809[M+H-COOH]⁺、103.0545 [M+H-NH₃-COOH]⁺,丢失1分子H₂0得到*m/z* 131.0493[M+H-H₂0]⁺碎片离子,结合文献[36-37]和特征离子碎片推测其为苯丙氨酸,二级质谱 图见图10。

图 10 苯丙氨酸的 MS² 图

Fig. 10 MS^2 of phenylalanine

表 2 活性成分信息

Table 2 Information of active constituents

3.2.7 川蛭通络胶囊中其他类成分 除以上6 种化合物之外,在川蛭通络胶囊中还鉴别出了香 豆素类、蒽醌类等化合物。其中香豆素类化合物 主要来源于川芎,蒽醌类化合物主要来源于 黄芪。

3.3 网络药理学及分子对接研究

3.3.1 活性成分的筛选 根据 2.2.1 项下的筛选 原则,从已鉴定的成分中整合得到川蛭通络胶囊候 选活性成分共 35 个,其中根据 ADME 参数筛选得 到活性成分 23 个,根据相关文献报道与脑梗死明确 相关的活性成分得到 12 个,见表 2。

3.3.2 川蛭通络胶囊治疗脑梗死的共有靶点获取 根据2.2.2项下的靶点筛选原则,筛选得到活性 成分靶点508个,脑梗死疾病靶点1271个,绘制成 分靶点与疾病靶点交集韦恩图,见图11,取交集后 共得到128个共有靶点。

No.	化合物	OB/%	DL	分子式	归属
CX1	阿魏酸(ferulic acid) ^[37]	39.56	0.06	C ₁₀ H ₁₀ O ₄	b
CX2	正丁基苯酞(butylphthalide) ^[38]	_	-	$C_{12}H_{14}O_2$	b
CX3	欧当归内酯 A(levistilide A) ^[38]	9.96	0.82	$C_{24}H_{28}O_4$	b
CX4	藁本内酯(ligustilide) ^[39]	23.50	0.07	$C_{12}H_{14}O_2$	b
CX5	洋川芎内酯 A(senkyunolide A) ^[38]	26.56	0.07	$C_{12}H_{16}O_2$	b
CX6	叶酸(folic acid)	68.96	0.71	$C_{19}H_{19}N_7O_6$	b
DS1	异欧前胡素(isoimperatorin)	45.46	0.23	$C_{16}H_{14}O_4$	с
DS2	丹酚酸 B(salvianolic acid B) ^[40]	3.01	0.41	$C_{36}H_{30}O_{16}$	с
DS3	丹参素(danshensu) ^[41]	36.91	0.06	$\mathrm{C_9H_{10}O_5}$	с
DS4	迷迭香酸(rosmarinic acid) ^[42]	1.38	0.35	$C_{18}H_{16}O_8$	с
DS5	丹参酮 I (tanshinone I) ^[43]	29.27	0.36	$C_{18}H_{12}O_3$	с
DS6	丹参酮 II _A (tanshinone II _A)	49.89	0.40	$C_{19}H_{18}O_3$	с
DS7	隐丹参酮(cryptotanshinone)	52.34	0.40	$C_{19}H_{20}O_3$	с
DS8	丹参新醌甲(danshenxinkun A)	45.64	0.30	$C_{18}H_{16}O_4$	с
DS9	亚甲基丹参醌(methylenetanshinquinone)	37.07	0.36	$C_{18}H_{14}O_3$	с
DS10	丹参新酮(miltirone)	38.76	0.25	$C_{19}H_{22}O_2$	с
DS11	二氢丹参酮 I(dihydrotanshinone I)	45.04	0.36	$C_{18}H_{14}O_3$	с
DS12	新隐丹参酮(neocryptotanshinone)	52.49	0.32	$C_{19}H_{22}O_4$	с
DS13	异隐丹参酮(isocryptotanshinone)	54.98	0.39	$C_{19}H_{20}O_3$	с
DS14	去氢丹参酮 II _A (dehydrotanshinone II _A)	43.76	0.40	$C_{19}H_{16}O_3$	с
DS15	四氢丹参酮 I (trijuganone B)	38.75	0.36	$C_{18}H_{16}O_3$	с
DS16	降丹参醌(nortanshinone)	34.72	0.37	$C_{17}H_{12}O_4$	с
DS17	柳杉酚(sugiol)	36.11	0.28	$C_{20}H_{28}O_2$	с
DS18	microstegiol	39.61	0.28	$C_{20}H_{26}O_2$	с
DS19	丹参环庚三烯酚酮(miltipolone)	36.56	0.37	$C_{19}H_{24}O_3$	с
DS20	丹参螺缩酮内酯(danshen spiroketal lact)	50. 43	0.31	$C_{17}H_{16}O_3$	с

2023年10月 | 第48卷第19期

🔊 中国中药杂志

续表2					
No.	化合物	OB/%	DL	分子式	归属
DS21	4-methylenemiltirone	34.35	0.23	$C_{18}H_{18}O_2$	с
DS22	脱氧基新隐丹参酮(deoxyneocryptotanshinone)	49.40	0.29	$C_{19}H_{22}O_3$	с
HQ1	芒柄花素(formononetin)	69.67	0.21	$\mathrm{C_{16}H_{12}O_4}$	d
HQ2	毛蕊异黄酮(calycosin)	47.75	0.24	$C_{16}H_{12}O_5$	d
HQ3	9,10-二甲氧基紫檀烷-3-0-β-D-葡萄糖苷(9,10-dimethoxypterocarpan-	36.74	0. 92	$C_{25}H_{28}O_{11}$	d
	3- <i>O</i> -β-D-glucoside)				
HQ4	黄芪甲苷(astragaloside IV) ^[44]	17.74	0.15	${\rm C}_{41}{\rm H}_{68}{\rm O}_{14}$	d
HQ5	毛蕊异黄酮葡萄糖苷(calycosin-7-0-glucoside)	41.60	0.81	${\rm C}_{22}{\rm H}_{22}{\rm O}_{10}$	d
A1	绿原酸(chlorogenic acid) ^[45]	11.93	0.33	$C_{16}H_{18}O_9$	b`c`q
A2	咖啡酸(caffeic acid) ^[46]	54.97	0.05	$C_9H_8O_4$	b`c`q

注:CX.川芎;DS.丹参;HQ.黄芪;A.3种药材共有成分(图15同)。

图 11 成分靶点与疾病靶点交集韦恩图 Fig. 11 Venn diagram of intersection of component targets and disease targets

3.3.3 PPI 网络的构建 将获得的 128 个共有靶 点导入 STRING 数据库中,获得靶点蛋白间相互作 用关系,构建 PPI 网络图。该网络中共有 128 个节 点,1 608 条边。利用 Cytoscape 3.9.1 软件对 PPI 网络进行分析,共有靶点的平均节点度值为 50.3, 超过平均值的靶点蛋白有 51 个,图示节点越大,颜 色越深,说明其度值越大,说明此靶点蛋白在网络中 越重要,其中,TNF、VEGFA、EGFR、IL1B、CTNNB1、 SRC、CASP3、STAT3、PTGS2、HIF1A 等靶点的度值较 高,为核心作用靶点,见图 12。

3.3.4 GO 功能富集和 KEGG 通路富集分析 将 128个共有靶点导入 DAVID 数据库,进行 GO 功能 富集分析,得到生物过程(biological process, BP)条 目 668个,细胞组成(cell composition, CC)条目 91 个,分子功能(molecular function, MF)条目 132 个, 以 P 排序,分别选取 BP、CC、MF 的前 10条通路进 行可视化处理,运用 Bioinformatics 在线分析软件绘 制气泡图,见图 13。结果表明,共有靶点可能调控 5230

图 12 共有靶点的 PPI 网络 Fig. 12 PPI network of common targets

了药物反应、炎症反应、正向调控细胞迁移、正向调 控凋亡过程、对外源刺激的反应、缺氧应答等 BP,作 用于细胞膜、细胞外空间、膜筏等 CC,参与了蛋白结 合、酶结合、受体结合、血红素结合、跨膜受体蛋白酪 氨酸激酶活性等 MF。KEGG 通路富集筛选得到 146条信号通路,按 P 排序将前 20条信号通路进行 可视化处理,绘制气泡图,见图 14。结果表明,这些 靶点主要在脂质和动脉粥样硬化、癌症中的糖聚蛋 白、癌症中的 microRNAs、流体剪切应力和动脉粥样 硬化等通路富集较多。这表明川蛭通络胶囊通过各 项生物过程多维调控,从而治疗脑梗死。

图 13 共有靶点的 GO 富集

图 14 共有靶点 KEGG 通路分析

Fig. 14 KEGG pathway analysis of common targets

3.3.5 "成分-共有靶点"网络构建 将已筛选的 水蛭、川芎、丹参、黄芪的有效成分,以及对应的潜 在靶点导入 Cytoscape 3.9.1 软件中,构建"成分-共有靶点"网络,网络中共有 183 个节点(包括药 物3个,化合物35个,共有靶点128个),425条 边,见图15。由图可见川蛭通络胶囊35个化学成 分、128个潜在靶点以及3个药物之间关系密切, 提示川蛭通络胶囊可能通过多成分、多靶点发挥 治疗脑梗死的作用。

3.3.6 关键成分与核心靶点的分子对接验证 根据"成分-共有靶点"网络中交集靶点的 degree 值选择欧当归内酯 A、阿魏酸、隐丹参酮为关键成分以及 5 个核心靶点蛋白(TNF、VEGFA、EGFR、IL-1β、

图 15 "成分-共有靶点"网络 Fig. 15 "Component-common target" network

CTNNB1),对关键成分与核心靶点蛋白进行分子对接,对接结合能见表3,结合能越小说明成分与靶点越易结合^[47]。具体对接过程见图 16,关键成分与核心靶点的结合能均小于-5 kJ·mol⁻¹,以上结果充分说明关键成分与核心靶点结合较为紧密,生物亲和力高,具有较高的药效活性。

表 3 关键成分与核心靶点结合能

Table 3	Binding energy	of key	$\operatorname{constituents}$	to	core	targets
---------	----------------	--------	-------------------------------	----	-----------------------	---------

化合物	基因	PDB ID	结合能/kJ·mol ⁻¹
欧当归内酯 A	TNF	5UUI	-7.6
	VEGFA	4QAF	-6.8
	EGFR	3POZ	-9.1
	IL1 <i>β</i>	5R8E	-7.6
	CTNNB1	3FQN	-8.8
阿魏酸	TNF	5UUI	-5.4
	VEGFA	4QAF	-6.6
	EGFR	3POZ	-6.2
	IL1 β	5R8E	-5.3
	CTNNB1	3FQN	-6.2
隐丹参酮	TNF	5UUI	-7.4
	VEGFA	4QAF	-10.8
	EGFR	3POZ	-9.4
	IL1 β	5R8E	-7.4
	CTNNB1	3FQN	-9.6

图 16 关键成分与核心靶点的分子对接

Fig. 16 Molecular docking of key compounds to core targets

4 讨论

本实验首次使用 UPLC-Q-Exactive Orbitrap-MS 技术对川蛭通络胶囊内化学成分进行了初步分析鉴 定。通过部分对照品对比、参考文献及二级质谱碎 片信息共鉴定和推测出川蛭通络胶囊内的 152 个化 学成分,其中有机酸类化合物 32 个,黄酮及其苷类 化合物 35 个,二萜类化合物 33 个,苯酞类化合物 13 个,三萜及三萜皂苷类化合物 12 个,含氮类化合 物 23 个,其他类化合物 4 个,对各个质谱峰进行了 归属,并推测了部分化合物的质谱裂解规律。其中 水蛭作为川蛭通络胶囊中的主要药效成分,其中部 分大分子类化合物使用此液质联用分析方法难以进 行定性研究^[48],后续仍需要通过一些药理实验进行 验证以促进川蛭通络胶囊质量标准的建立。

网络药理学发现欧当归内酯 A、阿魏酸、隐丹参 酮等可能为川蛭通络胶囊治疗脑梗死的主要活性成 分。相关研究也证明了这些化合物在改善脑梗死方 面的作用,如欧当归内酯 A 可通过 PI3K-AKT-eNOS 通路对内皮细胞起到保护作用,改善血液高凝性和 血液黏度,增强细胞活力^[49]。阿魏酸阿通过抗氧化 和抗炎作用对脑缺血有神经保护作用,可以通过调 节 PP2A 亚基 B、microRNA-9、海马钙素及细胞内钙 水平的表达来减少缺血性脑损伤引起的神经元细胞 损伤及凋亡^[50]。隐丹参酮可以对小胶质细胞极化 5232 进行调节,显著降低脑梗死体积、神经功能缺损评分、促炎细胞因子(IL-6、TNF- α 和 IL-1 β)的产生和 凋亡蛋白(cleaved caspase-3)的表达^[51]。

PPI 网络拓扑分析得到川蛭通络胶囊治疗脑梗 死的 10 个关键靶点: TNF、VEGFA、EGFR、IL1B、 CTNNB1、SRC、CASP3、STAT3、PTGS2、HIF1A。分子 对接结果显示,欧当归内酯A、阿魏酸、隐丹参酮与 TNF、VEGFA、EGFR、IL1B、CTNNB1 均对接成功,结 合能均小于-5 kJ·mol⁻¹。TNF 家族中的 TNF-α(肿 瘤坏死因子 α)的表达波动能够导致神经元细胞线 粒体的损伤,加剧神经元细胞膜完整性的破坏,导致 神经元细胞凋亡比例的上升^[52]。VEGFA 通过调节 无氧代谢,以帮助细胞适应缺氧,并保护神经元免受 脑梗死期间的缺血性损伤^[53]。EGFR 的自身磷酸 化启动 ERK/MAPK 途径,促进神经元细胞 DNA 合 成和细胞增殖,改善缺血性脑卒中后神经功能的修 复^[54]。本研究表明川蛭通络胶囊可能通过 TNF、 VEGFA、EGFR 等关键靶点,调节神经元细胞的合成 及凋亡发挥治疗脑梗死的作用。

综上,本研究利用 UPLC-Q-Exactive Orbitrap-MS 技术,较为快速、全面地对川蛭通络胶囊内化学成分 进行了初步鉴定分析,鉴定了其中的 152 个化学成 分,研究并总结了有机酸类、黄酮及其苷类、苯酞类、 二萜类和三萜及其皂苷类化合物在质谱中的裂解规 律。同时结合网络药理学预测川蛭通络胶囊治疗脑 梗死的核心靶点及作用机制,为川蛭通络胶囊的药 效物质基础研究及其制剂质量标准制定提供科学 参考。

[参考文献]

- [1] 库亚萍,张丽,李冰,等. 川蛭通络胶囊通过抑制神经炎症和 氧化应激治疗小鼠脑缺血再灌注损伤[J]. 中国中药杂志, 2022,47(12):3386.
- [2] 蔡敏,向军,项忆瑾,等. 川蛭通络胶囊对脑梗死急性期患者 的治疗作用[J]. 世界中医药,2022,17(3):400.
- [3] 杨海燕,李彦, 孔咏梅. 川蛭通络胶囊对小鼠脑缺血再灌注损 伤的保护作用及机制研究[J]. 河北医药, 2021, 43 (22): 3365.
- [4] 库亚萍,张丽,李冰,等. 川蛭通络胶囊通过抑制神经炎症和 氧化应激治疗小鼠脑缺血再灌注损伤[J]. 中国中药杂志, 2022,47(12):3386.
- [5] 王飞,饶峰,秦亚勤,等.川蛭通络胶囊联合瑞舒伐他汀对血脂正常急性脑梗死患者的疗效[J].世界中医药,2019,14
 (4):887.
- [6] 王世俊,孙科,王永革.川蛭通络胶囊联合长春西汀治疗脑梗 死恢复期的临床研究[J].现代药物与临床,2021,36(9): 1821.
- [7] 李浩然,董萍萍,李华健,等. 基于 UHPLC-Q-Exactive Orbitrap MS/MS 快速分析开心散物质基准中的化学成分[J]. 中国中 药杂志,2022,47(4):938.
- [8] 肖康宁,苏酩,侯玉洁,等. 经典名方达原饮化学成分的 UPLC-Q-Exactive Orbitrap MS 快速表征[J]. 中国实验方剂学 杂志,2023,29(10):1.
- [9] 蒋希羽,庄楷,张雅净,等. 基于 UPLC-Q-Exactive-Orbitrap-MS 的桂枝茯苓丸化学成分分析[J]. 中药材,2021,44(8):1889.
- [10] SHI M, HUANG F F, DENG C P, et al. Bioactivities, biosynthesis and biotechnological production of phenolic acids in *Salvia miltiorrhiza* [J]. Crit Rev Food Sci Nutr, 2019, 59(6): 953.
- [11] 万新焕,王瑜亮,周长征,等.丹参化学成分及其药理作用研究进展[J].中草药,2020,51(3):788.
- [12] 张立国,黄凯雯,倪力军,等. HPLC-MS/MS 法鉴定丹参与紫 丹参的水溶性成分[J]. 中成药,2022,44(12):4063.
- [13] 陈嘉慧,张雅心,刘孟华,等. 基于 UPLC-Q-TOF-MS/MS 技术 的丹参水提液全成分分析[J]. 广东药科大学学报,2020,36 (1):1.
- [14] 李郭帅,马阳,耿婷,等. UPLC-Q-TOF-MS/MS 分析复方南星 止痛膏化学成分[J].中国中药杂志,2019,44(2):298.
- [15] 张柂儇,刘海龙,王瑞琼,等. 黄芪化学成分和药理作用及 Q-marker 预测分析[J]. 中国新药杂志,2023,32(4):410.
- [16] LI J X, XU L, SANG R, et al. Immunomodulatory and antiinflammatory effects of total flavonoids of astragalus by regulating NF-κB and MAPK signalling pathways in RAW264.7 macrophages[J]. Pharmazie, 2018, 73(10):589.

- [17] 姚红. 基于网络药理学的黄芪中黄酮类抗肝癌细胞(HepG2) 化合物筛选及其作用机制研究[D].太原:山西中医药大学, 2021.
- [18] 陈美庆,朱卫丰,管咏梅,等. 葛根配方颗粒中化学成分的 UPLC-Q-TOF-MS/MS分析[J]. 中国实验方剂学杂志,2023, doi:10.13422/j. cnki. syfjx. 20230762.
- [19] SUN X Y, XUE S J, CUI Y X, et al. Characterization and identification of chemical constituents in Corni Fructus and effect of storage using UHPLC-LTQ-Orbitrap-MS [J]. Food Res Int, 2023,164:112330.
- [20] 胡万弟,王诗雨,徐翱昌,等. 基于 UHPLC-Q-TOF-MS 技术的 中药补骨脂化学成分表征与鉴定[J]. 中国中药杂志, 2023, 48(11): 2989.
- [21] 汤书婉,李新亮,马莉,等. 基于 HPLC 指纹图谱和 LC-Q-TOF/ MS 的加味黄芪桂枝五物汤化学成分研究[J]. 中草药,2023, 54(3):711.
- [22] 徐怡,陈途,陈明. 丹参的化学成分及其药理作用研究进展[J].海峡药学,2021,33(5):45.
- [23] LIU W, WU C G, WANG Q, et al. Tanshinone II A relieves arthritis by inhibiting autophagy of fibroblast-like synoviocytes via matrix metalloproteinase9/receptor for advanced glycation end product/toll-like receptor 9 signal axis in mice with collageninduced arthritis[J]. Phytother Res, 2023, 37(4):1391.
- [24] LIU Y, SHAO R, SUO T C, et al. Traditional Chinese medicine Danzhi Qing'e Decoction inhibits inflammation-associated prostatic hyperplasia via inactivation of ERK1/2 signal pathway [J]. J Ethnopharmacol, 2023, 309:116354.
- [25] YANG Y, SHAO M Y, CHENG W K, et al. A pharmacological review of tanshinones, naturally occurring monomers from *Salvia miltiorrhiza* for the treatment of cardiovascular diseases[J]. Oxid Med Cell Longev, 2023, 2023: 3801908.
- [26] 郑燕,江媛,冯展,等. 基于 UPLC-Q-TOF-MS 及分子对接技术 的丹参抗流感活性探究[J]. 中草药,2021,52(15):4487.
- [27] 杨娜,黄玮,单兰兰,等. UPLC-Q-TOF/MS 结合数据后处理快 速分类及鉴定丹参成分[J]. 时珍国医国药,2019,30(10): 2408.
- [28] 张驰,张彩娟,邱敏懿,晋小雁,等.丹参多化学成分的 UPLC-LTQ Orbitrap MS 快速表征解析[J].中医药学报,2018,46 (3):14.
- [29] 任伟光,郭丽丽,张翠英.川芎的研究进展及质量标志物 (Q-marker)的预测分析[J].世界科学技术(中医药现代化), 2021,23(9):3307.
- [30] 张刊. 川芎化学成分及生物活性研究[D]. 济南:山东大学, 2021.
- [31] 游飞祥,袁雪海,许浚,等. 基于 HPLC-Q-TOF/MS 的六经头痛 片化学成分分析[J]. 中草药,2017,48(20):4157.
- [32] 张纪红,吴卫东,刘建庭,等.基于 UPLC-Q-TOF/MS 技术活血 止痛胶囊化学成分的快速分析[J].中草药,2020,51(12): 3139.
- [33] 张清清,冯媛,李春花,等.基于 UPLC-Q-TOF/MS 技术快速鉴

定当归中苯酞类和有机酸类成分[J].中国药房,2022,33 (5):579.

- [34] 许如玲,范君婷,董惠敏,等. 经典名方黄芪桂枝五物汤标准 煎液化学成分的 UPLC-Q-TOF-MS 分析[J]. 中国中药杂志, 2020,45(23):5614.
- [35] 朱赟斐,谭善忠,王洪兰,等. 基于 UPLC-Q-TOF-MS/MS 技术 的益气健脾颗粒化学成分分析[J]. 中草药,2022,53(12): 3601.
- [36] 张雯霞,冯敏,苗雨露,等. 基于 UPLC-Q-TOF-MS/MS 技术的 还贝止咳方化学成分分析[J]. 中国中药杂志,2019,44(14): 3022.
- [37] 蒋昆霞,朱美玲,王雅心,等. UHILIC-MS/MS 同时测定栝楼桂 枝颗粒中22个氨基酸的含量[J]. 药学研究,2022,41(1): 13.
- [38] 何绪华. 基于网络药理学研究川芎抗血栓的分子机制[D]. 贵阳:贵州大学,2021.
- [39] 桑纳,王平汉,杜俊蓉.藁本内酯对小鼠海马区损伤的保护作 用及其作用机制[J].华西药学杂志,2016,31(3):245.
- [40] GUO H Y, ZHANG Z, GU T T, et al. Astrocytic glycogen mobilization participates in salvianolic acid B mediated neuroprotection against reperfusion injury after ischemic stroke [J]. Exp Neurol, 2022, 349:113966.
- [41] 刘景雪. 丹参素促进糖尿病小鼠内皮祖细胞介导的缺血性脑 损伤血管新生机制研究[D].上海:上海中医药大学,2020.
- [42] WANG J J, WANG S Q, GUO H Y, et al. Rosmarinic acid protects rats against post-stroke depression after transient focal cerebral ischemic injury through enhancing antioxidant response [J]. Brain Res, 2021, 1757:147336.
- [43] 王艳. 丹参酮 I 抗血管生成作用和机制研究[D]. 南昌:南昌 大学,2015.
- SHEN F Y, MENG Y, HE Y H, et al. Antihypertension effect of astragaloside IV during cerebral ischemia reperfusion in rats[J].
 Mol Med Rep, 2023, 27(1):3.
- [45] LILY, WANG Q, DENG L, et al. Chlorogenic acid alleviates

hypoxic-ischemic brain injury in neonatal mice[J]. Neural Regen Res,2023,18(3):568.

- [46] 张雯,孙雅丽,王琳,等.咖啡酸及其衍生物药理作用研究进展[J].动物医学进展,2021,42(8):103.
- [47] XIA Q Q, LIU M T, LI H, et al. Network pharmacology strategy to investigate the pharmacological mechanism of HuangQiXiXin Decoction on cough variant asthma and evidence-based medicine approach validation [J]. Evid Based Complement Alternat Med, 2020,2020;3829092.
- [48] 李国强,李韵仪,李桃,等.水蛭的化学成分研究[J].天津中 医药,2018,35(9):703.
- [49] LIU X T, ZHANG M J, LI Y J, et al. Effects of levistilide A on hemorheology and endothelial cell injury in rats with blood stasis
 [J]. Evid Based Complement Alternat Med, 2021, 2021; 6595383.
- [50] YAO K L, YANG Q, LI Y J, et al. MicroRNA-9 mediated the protective effect of ferulic acid on hypoxic-ischemic brain damage in neonatal rats[J]. PLoS ONE, 2020, 15(5); e0228825.
- [51] MAO Y F, QU Y, WANG Q D. Cryptotanshinone reduces neurotoxicity induced by cerebral ischemia-reperfusion injury involving modulation of microglial polarization [J]. Restor Neurol Neurosci, 2021, 39(3):209.
- [52] 陈亚楠. 急性脑梗塞患者 TNF-α、IL-6、CRP、MDA 和 SOD 水
 平及其临床意义[J]. 医学信息, 2020, 33(24):107.
- [53] ZHANG Y, LIU Q H, ZHANG T, et al. The therapeutic role of Jingchuan tablet on ischaemic cerebral stroke via the HIF-1α/ EPO/VEGFA signalling pathway[J]. Pharm Biol,2022,60(1): 2110.
- [54] HEN X, WU H, CHEN H S, et al. Astragaloside VI promotes neural stem cell proliferation and enhances neurological function recovery in transient cerebral ischemic injury via activating EGFR/MAPK signaling cascades [J]. Mol Neurobiol, 2019, 56 (4):3053.

[责任编辑 孔晶晶]