## · 中药工业 ·

# 藏药十味乳香散 HPLC 特征图谱及 5 个成分的 含量测定<sup>△</sup>

吴明慧<sup>1,2,3</sup>, 江德恩<sup>1,2,3</sup>, 杨俊峰<sup>1,2,3</sup>, 王佩<sup>1,2,3</sup>, 袁志兵<sup>1,2,3\*</sup>, 谢和兵<sup>1,2,3,4\*</sup>
1.安徽中医药大学 药学院,安徽 合肥 230012;
2.南通市海门长三角药物高等研究院,江苏 南通 226133;
3.江苏神猴医药研究有限公司,江苏 南通 226133;
4.西藏神猴药业有限责任公司,西藏 日喀则 857000

[摘要] 目的: 建立藏族药十味乳香散高效液相色谱法(HPLC)特征图谱,以及指标成分没食子酸、诃子联苯酸、鞣花酸、诃子酸、11-羰基- $\beta$ -乙酰乳香酸含量测定方法。方法: 采用 Ultimate XB- $C_{18}$ 色谱柱,以 0.1% 磷酸水溶液(A)-乙腈(B)为流动相,梯度洗脱,流速为 1.0 mL·min<sup>-1</sup>,检测波长为 250 nm,柱温为 30 °C,进样量为 10 µL。结果: 建立的 15 批十味乳香散特征图谱中标识出 25 个共有峰,相似度均大于 0.992;指标成分没食子酸、诃子联苯酸、鞣花酸、诃子酸和 11-羰基- $\beta$ -乙酰乳香酸的线性范围分别为  $2.86\sim57.20$  (r=1.0000)、 $8.18\sim163.54$  (r=0.9999)、 $3.61\sim72.21$  (r=0.9997)、 $9.96\sim199.23$  (r=0.9997)、 $0.53\sim10.69$  µg·mL<sup>-1</sup> (r=0.9999)。稳定性、精密度、重复性均较好,平均加样回收率分别为 100.6% (RSD=0.90%)、0.5% (RSD=0.90%) 、0.5% (RSD=0.90%) 、0.90% (R

[关键词] 十味乳香散;高效液相色谱法;含量测定;特征图谱 [中图分类号] R286 [文献标识码] A [文章编号] 1673-4890(2024)11-1980-09 doi:10.13313/j. issn. 1673-4890. 20240419003

# HPLC Specific Chromatogram of Tibetan Medicine Shiwei Ruxiang Powder and Content Determination of Five Components

 $WU\ Ming-hui^{1,2,3},\ JIANG\ De-en^{1,2,3},\ YANG\ Jun-feng^{1,2,3},\ WANG\ Pei^{1,2,3},\ YUAN\ Zhi-bing^{1,2,3*},\ XIE\ He-bing^{1,2,3,4*}$ 

- 1. School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China;
- 2. Nantong Haimen Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China;
  - 3. Jiangsu Shenhou Pharmaceutical Research Co., Ltd., Nantong 226133, China;
    - 4. Xizang Shenhou Pharmaceutical Co., Ltd., Rikaze 857000, China

[Abstract] Objective: To establish high performance liquid chromatography (HPLC) specific chromatogram for the Tibetan medicine Shiwei Ruxiang Powder and a method for determining the content of index components: gallic acid, chebulagic acid, ellagic acid, chebulinic acid, and acetyl-11-keto-β-boswellic acid. Methods: Gradient elution was carried out in the Ultimate XB-C<sub>18</sub> column with 0.1% phosphoric acid aqueous solution (A)-acetonitrile (B) as the mobile phase at a flow rate of 1.0 mL·min<sup>-1</sup>. The detection wavelength was 250 nm, and the column temperature was 30 °C. The sample injection volume was 10 μL. Results: Twenty-five common peaks were identified in the specific chromatograms of 15 batches of Shiwei Ruxiang Powder, with the similarities more than 0.992. The linear ranges of gallic acid, chebulagic acid, ellagic acid, chebulinic acid, and acetyl-11-keto-β-boswellic acid were 2.86-57.20 (r=1.000 0), 8.18-163.54 (r=0.999 9),

<sup>△ [</sup>基金项目] 国家自然科学基金项目 (81470247); 西藏自治区科技厅区域科技协同创新专项 (QYXTZX-RKZ2022-07)

<sup>\*[</sup>通信作者] 谢和兵,副主任药师,研究方向:高原医学、传统藏族药产业化开发;E-mail: 76445044@qq.com 袁志兵,副教授,研究方向:中药药理学;E-mail: zhibinyuan@sina.com

3.61-72.21 (*r*=0.999 7), 9.96-199.23 (*r*=0.999 7), and 0.53-10.69 μg·mL<sup>-1</sup> (*r*=0.999 9), respectively. The relative standard deviations (RSD) of stability, precision. The average recovery of the index components was 100.6% (RSD=0.90%), 100.5% (RSD=2.14%), 103.6% (RSD=1.19%), 101.0% (RSD=1.22%), and 102.2% (RSD=2.54%), respectively. **Conclusion**: The established specific chromatogram and index component content determination method are precise, simple, and sensitive, which can provide a reference for improving the quality standard of Shiwei Ruxiang Powder.

[Keywords] Shiwei Ruxiang Powder; HPLC; content determination; characteristic chromatogram

藏族药(以下简称藏药)十味乳香散,藏药名为毕嘎久巴,是由乳香、木香、诃子、毛诃子、余甘子、宽筋藤、巴夏嘎、渣驯膏、黄葵子和决明子10味中药粉碎混合制备的生药散剂,藏族医(以下简称藏医)临床用于痛风等风湿麻痹、类风湿性关节炎、皮肤病、黄水病。现代研究表明,该药针对痛风性关节炎疗效确切,具有抗炎止痛、降尿酸、保护肾损伤等作用[1-5],临床应用价值较大。

十昧乳香散是西藏神猴药业有限责任公司生产的独家剂型、国药准字产品(批准文号: Z20023288),但目前所执行的药品标准[WS-629-(Z-174)-2002)]<sup>[6]</sup>中仅有性状、薄层鉴别及散剂检验项,未有含量测定项,质量控制水平较低,影响产品临床疗效的稳定性。目前,关于本产品的质量研究只有单个成分的薄层扫描定量方法<sup>[7]</sup>,该方法虽然简便、快速,但精准度不佳。本研究参考《中华人民共和国药典》(以下简称《中国药典》)2020年版<sup>[8]</sup>、指纹图谱及含量测定相关文献<sup>[9-18]</sup>,建立十味乳香散的特征图谱,以及指标成分没食子酸、诃子联、指较图·2000,以及指标成分没食子酸、诃子联苯酸、鞣花酸、诃子酸、11-羰基-β-乙酰乳香酸的含量测定方法,为提高十味乳香散的质量标准提供参考。

#### 1 材料

#### 1.1 仪器

1100型高效液相色谱仪(安捷伦科技有限公司); FB-5510DTH型超声波清洗机(上海生析超声仪器有限公司); Synergy-UV型纯水仪(默克密理博公司); XSR205DU/AC型十万分之一分析天平(梅特勒托利多科技有限公司)。

#### 1.2 试药

对照品没食子酸(批号: 110831-201903, 纯度: 91.5%)、鞣花酸(批号: 111959-201903, 纯度: 88.8%)、 $11-羰基-\beta-$ 乙酰乳香酸(批号: 111760-202103, 纯度: 91.3%)均购于中国食品药

品 检 定 研 究 院; 对 照 品 诃 子 联 苯 酸 ( 批 号: DST220831-064, 纯 度: 98%)、诃 子 酸 ( 批 号: DST230801-065, 纯 度: 98%)均购于成都乐美天医 药科技有限公司; 乙腈、甲醇均为色谱纯; 磷酸为优级纯。

黄葵子(批号: 230310)、木香(批号: 20200301)、宽筋藤(批号: 20231012)、巴夏嘎(批号: 230310)、渣驯膏(批号: 20231013)、决明子(批号: 20200301) 均购于西藏神猴药业有限责任公司,经江苏神猴医药研究有限公司副主任药师谢和兵鉴定均为正品。15 批十味乳香散(批号分别为 20220501、20220604、20220701、20220801、20221001、20221002、20221101、20221201、20230201、20230301、20230302、20230401、20230501、20230901、20231101、编号为S1~S15) 均购于西藏神猴药业有限责任公司。

#### 2 方法与结果

#### 2.1 色谱条件

Ultimate XB-C<sub>18</sub> 色谱柱(250 mm×4.6 mm, 5 μm);流动相: 0.1%磷酸水溶液(A)-乙腈(B),梯度洗脱(0~10 min, 3%~8%B; 10~15 min, 8%~15%B; 15~60 min, 15%~19%B; 60~65 min, 19%~90%B; 65~85 min, 90%B);检测波长: 250 nm;流速: 1.0 mL·min<sup>-1</sup>;柱温: 30 °C;进样量: 10 μL。

#### 2.2 溶液的制备

2.2.1 混合对照品溶液的制备 精密称定对照品没食子酸 10.42 mg、诃子联苯酸 10.43 mg、诃子酸 10.70 mg、11-羰基-β-乙酰乳香酸 11.71 mg,分别置于 10 mL量瓶中,加入甲醇-0.1%磷酸水溶液(7:3)溶解并定容,摇匀,制得质量浓度分别为 0.953、1.022、1.049、1.069 mg·mL<sup>-1</sup>的对照品储备液;精密称定鞣花酸对照品 10.70 mg,置于 50 mL量瓶中,加入甲醇溶解并定容,摇匀,制得质量浓度为 0.190 mg·mL<sup>-1</sup>的对照品储备液。

精密移取各对照品储备液适量,置于同一个 50 mL量瓶,加入甲醇-0.1%磷酸水溶液定容,摇匀,制得没食子酸、诃子联苯酸、鞣花酸、诃子酸、11-羰基-β-乙酰乳香酸质量浓度分别为 0.057、0.164、0.072、0.199、0.011 mg·mL<sup>-1</sup>的混合对照品溶液。2.2.2 供试品溶液的制备 取十味乳香散 0.2 g,精密称定,置于 150 mL 具塞锥形瓶中,加甲醇-0.1% 磷酸水溶液 50 mL,称质量,超声处理(250 W,50 kHz)60 min,放冷,再称质量,用甲醇-0.1% 磷酸水溶液补足减失的质量,摇匀,0.45 μm微孔滤膜滤过,即得供试品溶液。

2.2.3 阴性样品溶液的制备 依据十味乳香散的处方比例,分别制备缺诃子、毛诃子的阴性样品,缺余甘子、诃子、毛诃子的阴性样品,缺乳香的阴性样品,同时称取其他中药适量,混合粉碎成细粉,其余操作同2.2.2项下方法制备阴性样品溶液。

2.2.4 空白溶液的制备 不加十味乳香散,其余操作同2.2.2项下方法,制备空白溶液。

#### 2.3 特征图谱研究

#### 2.3.1 方法学考察

2.3.1.1 精密度试验 取十味乳香散样品 (S4),按2.2.2项下方法制备供试品溶液,再按2.1项下色谱条件连续进样测定6次,以20号峰(鞣花酸)为参照峰,测得各共有峰相对保留时间的RSD均小于0.81%,相对峰面积的RSD均小于1.94%,表明仪器精密度良好。

2.3.1.2 稳定性试验 取十味乳香散样品 (S4), 按2.2.2项下方法制备1份供试品溶液,分别于0、

2、4、8、12、24 h,按2.1项下色谱条件进样分析,以20号峰(鞣花酸)为参照峰,测得各共有峰的相对保留时间的RSD均小于0.32%,相对峰面积的RSD均小于1.90%,表明24 h内溶液稳定性良好。

2.3.1.3 重复性试验 取十味乳香散样品 (S4),按2.2.2项下方法平行制备6份供试品溶液,再按2.1项下色谱条件进样分析,以20号峰 (鞣花酸)为参照峰,测得各共有峰的相对保留时间的RSD均小于0.29%,相对峰面积的RSD均小于1.92%,表明该方法重复性良好。

2.3.2 对照特征图谱的生成 取十味乳香散 (S1~S15),分别按2.2.2项下方法制备供试品溶液,再按2.1项下色谱条件进样,记录色谱图,并导入"中药色谱指纹图谱相似度评价系统"(2012版),以S4色谱图为参照,采用中位数法,时间窗宽度设为0.1 min,进行多点校正和色谱峰匹配,生成15批十味乳香散的高效液相色谱法(HPLC)叠加特征图谱及对照特征图谱(R),共标识25个共有峰,通过与混合对照品溶液色谱图(S0)进行比对,指认了5个共有峰:4号峰(没食子酸)、17号峰(诃子联苯酸)、20号峰(鞣花酸)、21号峰(诃子酸)、25号峰(11-羰基-β-乙酰乳香酸),见图1、图2。

2.3.3 特征图谱相似度评价 采用"中药色谱指纹图谱相似度评价系统"(2012版)分析15批十味乳香散特征图谱与R的相似度均在0.992以上,表明15批十味乳香质量稳定性较好,结果见表1。

由于20号峰(鞣花酸)的峰形对称、峰面积较大,且分离度也符合要求,因此选取20号峰(鞣花

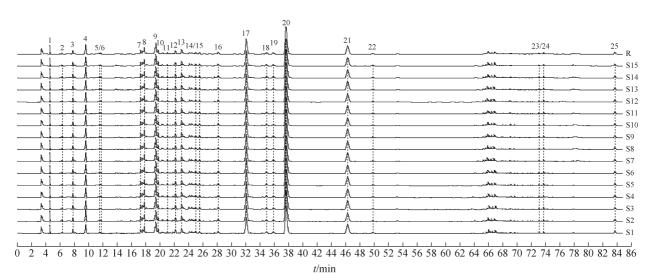
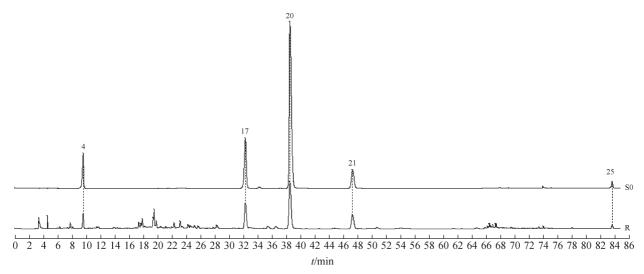




图1 15批十味乳香散样品的HPLC叠加特征图谱



注: 4. 没食子酸; 17. 诃子联苯酸; 20. 鞣花酸; 21. 诃子酸; 25. 11-羰基-β-乙酰乳香酸。

图 2 混合对照品色谱图与对照特征图谱共有峰的指认图

酸)作为参照峰,计算15批样品中各共有峰与参照峰的相对保留时间和相对峰面积的RSD分别为0~0.54%、0~26.30%,表明不同批次的十味乳香散样品的化学成分相似,但部分成分的含量有一定的差异。

#### 2.4 含量测定

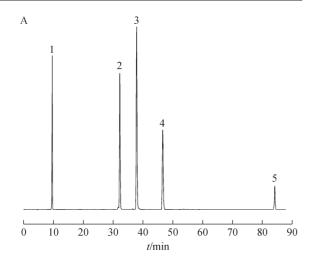
2.4.1 系统适用性试验 取 2.2 项下各溶液,按 2.1 项下色谱条件测定,记录色谱图,见图 3。结果表明,供试品溶液和对照品溶液的指标成分色谱峰保留时间一致,阴性样品溶液和空白溶液无干扰。

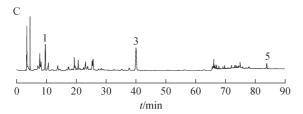
没食子酸、诃子联苯酸、鞣花酸、诃子酸、11-羰基-β-乙酰乳香酸色谱峰的分离度、拖尾因子、理论板数均符合《中国药典》2020年版规定。

2.4.2 线性关系考察 精密吸取2.2.1项下混合对照品溶液0.5、1.0、2.0、4.0、8.0、10.0 mL,分别置于10 mL量瓶中,用甲醇-0.1%磷酸水溶液定容,摇匀,即得6种不同质量浓度的混合对照品溶液,按照2.1项下色谱条件测定,以质量浓度为横坐标(X)、峰面积为纵坐标(Y)、绘制标准曲线并回归分析,见表2。

**2.4.3** 定量限、检测限考察 取**2.2.1**项下混合对 照品溶液逐级稀释,分别以信噪比为3:1和10:1

表1 15批十味乳香散 HPLC 特征图谱相似度评价


| 编号  | S1    | S2    | S3    | S4    | S5    | S6    | S7    | S8    | S9    | S10   | S11   | S12   | S13   | S14   | S15   | R     |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| S1  | 1.000 | 0.993 | 0.999 | 0.995 | 0.997 | 0.996 | 0.997 | 0.996 | 0.997 | 0.994 | 0.997 | 0.995 | 0.996 | 0.995 | 0.997 | 0.998 |
| S2  | 0.993 | 1.000 | 0.994 | 0.996 | 0.996 | 0.996 | 0.992 | 0.993 | 0.994 | 0.997 | 0.996 | 0.992 | 0.992 | 0.996 | 0.995 | 0.997 |
| S3  | 0.999 | 0.994 | 1.000 | 0.996 | 0.996 | 0.996 | 0.996 | 0.995 | 0.996 | 0.993 | 0.996 | 0.995 | 0.995 | 0.994 | 0.996 | 0.998 |
| S4  | 0.995 | 0.996 | 0.996 | 1.000 | 0.996 | 0.994 | 0.994 | 0.993 | 0.995 | 0.995 | 0.996 | 0.993 | 0.993 | 0.995 | 0.996 | 0.997 |
| S5  | 0.997 | 0.996 | 0.996 | 0.996 | 1.000 | 0.998 | 0.996 | 0.997 | 0.998 | 0.997 | 0.998 | 0.995 | 0.995 | 0.997 | 0.997 | 0.999 |
| S6  | 0.996 | 0.996 | 0.996 | 0.994 | 0.998 | 1.000 | 0.996 | 0.997 | 0.998 | 0.997 | 0.998 | 0.995 | 0.996 | 0.997 | 0.998 | 0.999 |
| S7  | 0.997 | 0.992 | 0.996 | 0.994 | 0.996 | 0.996 | 1.000 | 0.998 | 0.997 | 0.993 | 0.997 | 0.996 | 0.997 | 0.995 | 0.997 | 0.998 |
| S8  | 0.996 | 0.993 | 0.995 | 0.993 | 0.997 | 0.997 | 0.998 | 1.000 | 0.998 | 0.995 | 0.997 | 0.997 | 0.998 | 0.996 | 0.997 | 0.998 |
| S9  | 0.997 | 0.994 | 0.996 | 0.995 | 0.998 | 0.998 | 0.997 | 0.998 | 1.000 | 0.997 | 0.999 | 0.996 | 0.997 | 0.998 | 0.999 | 0.999 |
| S10 | 0.994 | 0.997 | 0.993 | 0.995 | 0.997 | 0.997 | 0.993 | 0.995 | 0.997 | 1.000 | 0.998 | 0.994 | 0.993 | 0.998 | 0.996 | 0.998 |
| S11 | 0.997 | 0.996 | 0.996 | 0.996 | 0.998 | 0.998 | 0.997 | 0.997 | 0.999 | 0.998 | 1.000 | 0.997 | 0.997 | 0.998 | 0.998 | 0.999 |
| S12 | 0.995 | 0.992 | 0.995 | 0.993 | 0.995 | 0.995 | 0.996 | 0.997 | 0.996 | 0.994 | 0.997 | 1.000 | 0.997 | 0.995 | 0.996 | 0.997 |
| S13 | 0.996 | 0.992 | 0.995 | 0.993 | 0.995 | 0.996 | 0.997 | 0.998 | 0.997 | 0.993 | 0.997 | 0.997 | 1.000 | 0.997 | 0.997 | 0.998 |
| S14 | 0.995 | 0.996 | 0.994 | 0.995 | 0.997 | 0.997 | 0.995 | 0.996 | 0.998 | 0.998 | 0.998 | 0.995 | 0.997 | 1.000 | 0.998 | 0.998 |
| S15 | 0.997 | 0.995 | 0.996 | 0.996 | 0.997 | 0.998 | 0.997 | 0.997 | 0.999 | 0.996 | 0.998 | 0.996 | 0.997 | 0.998 | 1.000 | 0.999 |
| R   | 0.998 | 0.997 | 0.998 | 0.997 | 0.999 | 0.999 | 0.998 | 0.998 | 0.999 | 0.998 | 0.999 | 0.997 | 0.998 | 0.998 | 0.999 | 1.000 |


时的质量浓度作为检测限和定量限。结果表明,没食子酸、诃子联苯酸、鞣花酸、诃子酸和11-羰基- $\beta$ -乙酰乳香酸的检测限分别为6.44、136.30、3.60、33.21、8.90 ng·mL<sup>-1</sup>,定量限分别为21.45、408.86、14.44、99.62、26.73 ng·mL<sup>-1</sup>。

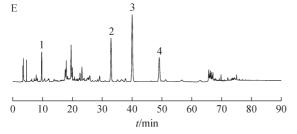
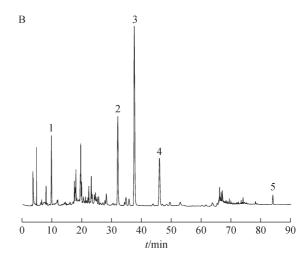
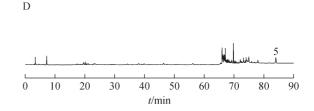

2.4.4 精密度试验 取2.2.2项下供试品溶液,按2.1项下色谱条件连续测定6次,测得没食子酸、诃

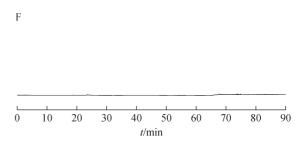
表 2 十味乳香散 5 个指标性成分线性关系考察结果

| 成分                | 线性方程                               | 线性范围/μg·mL <sup>-1</sup> | r       |
|-------------------|------------------------------------|--------------------------|---------|
| 没食子酸              | <i>Y</i> =15.63 <i>X</i> - 3.565   | 2.86~57.20               | 1.000 0 |
| 诃子联苯酸             | <i>Y</i> =12.78 <i>X</i> - 52.368  | 8.18~163.54              | 0.999 9 |
| 鞣花酸               | <i>Y</i> =103.92 <i>X</i> - 225.78 | 3.61~72.21               | 0.9997  |
| 诃子酸               | <i>Y</i> =7.182 <i>X</i> - 18.758  | 9.96~199.23              | 0.9997  |
| 11-羰基-β-乙酰<br>乳香酸 | <i>Y</i> =15.531 <i>X</i> - 0.501  | 0.53~10.69               | 0.999 9 |







子联苯酸、鞣花酸、诃子酸、11-羰基- $\beta$ -乙酰乳香酸峰 面 积 RSD 分 别 为 0.67%、 0.63%、 0.08%、 0.52%、0.15%,表明仪器精密度良好。

**2.4.5** 重复性试验 取十味乳香散(S4),按 **2.2.2**项下方法平行制备 6份供试品溶液,按 **2.1**项下色谱条件测定,测得没食子酸、诃子联苯酸、鞣花酸、诃子酸、11-羰基-β-乙酰乳香酸的平均质量分数分别为 5.95、17.61、4.86、21.16、1.12 mg·g<sup>-1</sup>,含量的 RSD 分别为 1.84%、1.98%、1.58%、1.95%、1.41%,表明该方法重复性良好。

2.4.6 稳定性试验 按2.2.2项下方法制备1份供试品溶液,室温下于0、2、4、8、12、24h,按2.1 项下色谱条件测定,测得没食子酸、诃子联苯酸、鞣花酸、诃子酸、11-羰基-β-乙酰乳香酸峰面积的







注: A. 混合对照品; B. 供试品; C. 缺诃子、毛诃子阴性样品; D. 缺余甘子、诃子、毛诃子阴性样品; E. 缺乳香阴性样品; F. 空白溶液; 1. 没食子酸; 2. 诃子联苯酸; 3. 鞣花酸; 4. 诃子酸; 5. 11-羰基-β-乙酰乳香酸。

图3 混合对照品、供试品、阴性样品、空白溶液 HPLC 图

RSD 分 别 为 1.88%、 1.82%、 1.56%、 1.67%、 1.68%, 表明溶液在 24 h 内稳定。

2.4.7 加样回收率试验 取已知含量的十味乳香散 (S4) 6份,每份0.2g,精密称定,加入2.2.1项下 各对照品储备液,按2.2.2项下方法平行制备6份供试品溶液,按2.1项下色谱条件测定,计算加样回收率和RSD,结果见表3。

2.4.8 样品的含量测定 取十味乳香散 (S1~S15), 分别按2.2.2项下方法制备供试品溶液,按2.1项下色谱条件测定,用外标法计算含量,结果见表4。

#### 3 讨论

### 3.1 主要指标成分的选择

十味乳香散处方中诃子、毛诃子和余甘子3味

药在藏医药被称"大三果",作为一种调节体内平衡,滋补强身,治疗痛风、风湿性关节炎常用的方剂在藏医药中广泛应用[19-21]。现代研究表明,诃子、毛诃子和余甘子中主要含有的化学成分是鞣质和酚酸类成分,没食子酸、鞣花酸、诃子酸和诃子联苯酸含量较高,其具有抗炎、止痛、抗氧化、抗菌、降血压等药理作用[22-24];处方中乳香是藏医药中常见的"三黄水药"的主要组成,主要含有萜类及挥发油类成分,其中萜类成分主要是以11-羰基-β-乙酰乳香酸为代表的乌苏烷型三萜类具有抗炎、抗纤维化等多种药理活性,临床上常用于风湿与类风湿性关节炎的治疗[25-27]。因此,结合十味乳香散的临床应用,本研究选择11-羰基-β-乙酰乳香酸、没食子酸、鞣花酸、诃子酸和诃子联苯酸作为十味乳香散含量测定的指标成分。

表3 十味乳香散5个指标性成分加样回收率结果

| 成分                     | 称样量/g    | 样品中含量/mg | 对照品加入量/mg | 测得量/mg | 回收率/% | 平均回收率/% | RSD/% |
|------------------------|----------|----------|-----------|--------|-------|---------|-------|
| 没食子酸                   | 0.200 25 | 1.192    | 0.572     | 1.770  | 101.0 | 100.6   | 0.90  |
|                        | 0.200 27 | 1.192    | 0.572     | 1.760  | 99.3  |         |       |
|                        | 0.20 025 | 1.192    | 0.572     | 1.763  | 99.8  |         |       |
|                        | 0.200 45 | 1.193    | 0.572     | 1.776  | 101.8 |         |       |
|                        | 0.200 38 | 1.193    | 0.572     | 1.769  | 100.8 |         |       |
|                        | 0.200 22 | 1.192    | 0.572     | 1.768  | 100.7 |         |       |
| 诃子联苯酸                  | 0.200 25 | 3.526    | 1.778     | 5.361  | 103.2 | 100.5   | 2.14  |
|                        | 0.200 27 | 3.527    | 1.778     | 5.355  | 102.8 |         |       |
|                        | 0.200 25 | 3.526    | 1.778     | 5.282  | 98.7  |         |       |
|                        | 0.200 45 | 3.530    | 1.778     | 5.283  | 98.6  |         |       |
|                        | 0.200 38 | 3.529    | 1.778     | 5.322  | 100.9 |         |       |
|                        | 0.200 22 | 3.526    | 1.778     | 5.279  | 98.6  |         |       |
| 鞣花酸                    | 0.200 25 | 0.972    | 0.476     | 1.460  | 102.5 | 103.6   | 1.19  |
|                        | 0.200 27 | 0.972    | 0.476     | 1.468  | 104.0 |         |       |
|                        | 0.200 25 | 0.972    | 0.476     | 1.463  | 102.9 |         |       |
|                        | 0.200 45 | 0.973    | 0.476     | 1.475  | 105.3 |         |       |
|                        | 0.200 38 | 0.973    | 0.476     | 1.475  | 105.4 |         |       |
|                        | 0.200 22 | 0.972    | 0.476     | 1.471  | 104.7 |         |       |
| 诃子酸                    | 0.20 025 | 4.238    | 2.112     | 6.327  | 98.9  | 101.0   | 1.22  |
|                        | 0.200 27 | 4.238    | 2.112     | 6.364  | 100.6 |         |       |
|                        | 0.200 25 | 4.238    | 2.112     | 6.340  | 102.4 |         |       |
|                        | 0.200 45 | 4.242    | 2.112     | 6.385  | 101.5 |         |       |
|                        | 0.200 38 | 4.241    | 2.112     | 6.363  | 100.5 |         |       |
|                        | 0.200 22 | 4.237    | 2.112     | 6.388  | 101.9 |         |       |
| 11-羰基 <b>-β</b> -乙酰乳香酸 | 0.200 25 | 0.224    | 0.107     | 0.334  | 102.8 | 102.2   | 2.54  |
|                        | 0.200 27 | 0.225    | 0.107     | 0.330  | 98.1  |         |       |
|                        | 0.200 25 | 0.225    | 0.107     | 0.332  | 100.0 |         |       |
|                        | 0.200 45 | 0.225    | 0.107     | 0.337  | 104.6 |         |       |
|                        | 0.200 38 | 0.224    | 0.107     | 0.335  | 103.7 |         |       |
|                        | 0.200 22 | 0.225    | 0.107     | 0.336  | 103.7 |         |       |

表 4 十味乳香散 5 个指标性成分质量分数测定结果

 $mg \cdot g^{-1}$ 

| 编号    | 没食<br>子酸 | 诃子联<br>苯酸 | 鞣花酸  | 诃子酸   | 11-羰基-β-乙酰乳<br>香酸 |
|-------|----------|-----------|------|-------|-------------------|
| S1    | 5.24     | 18.42     | 4.70 | 23.45 | 1.30              |
| S2    | 4.52     | 18.55     | 4.58 | 24.69 | 1.51              |
| S3    | 4.43     | 18.27     | 4.62 | 23.97 | 1.27              |
| S4    | 6.05     | 17.67     | 5.16 | 21.47 | 1.15              |
| S5    | 4.56     | 17.71     | 4.70 | 22.70 | 1.36              |
| S6    | 4.52     | 17.79     | 4.79 | 22.99 | 1.15              |
| S7    | 5.36     | 17.17     | 5.04 | 21.54 | 1.19              |
| S8    | 4.35     | 19.53     | 4.70 | 23.80 | 1.06              |
| S9    | 4.53     | 17.19     | 4.86 | 22.87 | 1.15              |
| S10   | 4.63     | 17.77     | 4.83 | 22.50 | 1.29              |
| S11   | 4.71     | 18.61     | 4.72 | 22.66 | 1.25              |
| S12   | 4.69     | 17.47     | 4.70 | 22.73 | 1.26              |
| S13   | 4.58     | 17.35     | 4.69 | 23.20 | 1.38              |
| S14   | 5.37     | 16.81     | 5.03 | 22.28 | 1.22              |
| S15   | 4.91     | 16.84     | 4.78 | 22.91 | 1.16              |
| 均值    | 4.83     | 17.81     | 4.79 | 22.92 | 1.25              |
| RSD/% | 9.70     | 4.20      | 3.45 | 3.71  | 9.09              |
|       |          |           |      |       |                   |

#### 3.2 对照品溶液的制备

鞣花酸溶于吡啶,微溶于水、醇,与水相比其在甲醇中的溶解度大大提高[28-29]。本研究参照《中国药典》2020年版(一部)石榴皮药材含量测定方法[8],配制成质量浓度为20 μg·mL<sup>-1</sup>的鞣花酸对照品溶液。但本研究发现配制的鞣花酸对照品溶液室温放置12 h左右会有沉淀析出,溶液变浑浊,且室温越低、甲醇体积分数越低,沉淀越易析出,这与鞣花酸在溶液状态下不稳定、易析出有关[30-31]。同时研究发现,pH对鞣花酸的溶解稳定性也有较大影响。有研究表明,鞣花酸在酸性溶液中溶解性会随pH降低而增加,在中性和碱性溶液中的溶解度较小,且在碱性溶液中易发生分解[<sup>32]</sup>。因此,本研究采用先用纯甲醇溶解鞣花酸对照品配制对照品母液,再用甲醇-0.1%磷酸水溶液对母液进行稀释,制备混合对照品溶液。

#### 3.3 供试品溶液的制备

本研究前期通过单因素试验考察各因素对供试品溶液中5个指标成分含量的影响,结果表明,甲醇体积分数分别为10%、30%、50%、70%的甲醇-0.1%磷酸水溶液作为提取溶剂制备的供试品溶液中酚酸类成分没食子酸、诃子酸和诃子联苯酸含量变化不显著,鞣花酸、11-羰基-β-乙酰乳香酸的含

量显著增加, 而甲醇体积分数分别为70%、80%、 90%的甲醇-0.1%磷酸水溶液作为提取溶剂制备的 供试品溶液中酚酸类成分含量显著下降, 鞣花酸、 11-羰基-β-乙酰乳香酸的含量变化不显著,这与鞣花 酸、11-羰基-β-乙酰乳香酸在甲醇中的溶解度较高有 关。因此,选用体积分数为70%的甲醇-0.1%磷 酸水溶液作为提取溶剂;超声时间在一定范围内 与提取液中指标成分的含量呈正相关,超声30、 60 min 时,提取液中酚酸类指标成分含量变化不显 著,鞣花酸、11-羰基-β-乙酰乳香酸含量增加显著, 当超声时间分别为60、120、180 min 时所得提取液 中5个指标成分的含量无显著增加,因此选择超声 60 min。在同等提取方式和提取时间条件下,料液 比与提取液中指标成分的含量呈正相关,料液比分 别为1:25、1:50、1:100、1:250时,提取液 中指标成分鞣花酸的含量显著增加,但当料液比为 1:250、1:400、1:500时,提取液中指标成分的 含量无显著增加, 故选择料液比为1:250。最终确 定的供试样品处理方法为称取供试品0.2g,加入 甲醇-0.1%磷酸水溶液 50 mL 超声 60 min。

#### 3.4 测定波长的选择

本研究采用紫外-可见分光光度计进行全波长扫描(200~700 nm)。结果表明,酚酸类指标成分没食子酸、诃子酸和诃子联苯酸在270 nm处有较强的吸收,在250 nm处有较弱的吸收,而鞣花酸和11-羰基-β-乙酰乳香酸在250 nm处有最大吸收,在270 nm处几乎无吸收,结合文献[33-34],余甘子、诃子、毛诃子中酚酸类成分含量较高,因此,选择检测波长为250 nm。

#### 3.5 样品含量测定结果

15 批十味乳香散的 5 个指标成分的含量的 RSD 为 3. 45%~9. 70%,含量 RSD 相差较大的原因与原料药材产地、厂家、批次及散剂制备工艺等因素有关,提示生产企业应在药材质量评价的基础上,优选并固定原料药材的产地与厂家,此外,根据本研究的测定结果,质量标准中指标成分的质量分数应控制为标示量的 80%~120%。

#### 4 结语

本研究采用HPLC建立了十味乳香散的特征图谱及没食子酸、诃子联苯酸、鞣花酸、诃子酸、11-

羰基-β-乙酰乳香酸的含量测定方法,经方法学验证,该方法重复性、准确度良好,可为提升十味乳香散的质量标准提供参考。

[利益冲突] 本文不存在任何利益冲突。

#### 参考文献

- [1] 马春秀,王利彦,吕慧玲,等. 藏药十味乳香散对高尿酸血症动物模型的降尿酸作用[J]. 中国高原医学与生物学杂志,2021,42(1):58-61.
- [2] 寇毅英,王利彦,李瑞莲,等. 藏药十味乳香散镇痛抗炎及抗痛风性关节炎作用[J]. 青海医学院学报,2016,37(4):228-232.
- [3] 丁佳栋,张春江. 藏药十味乳香散治疗类风湿性关节炎 大鼠的疗效及机制[J]. 西北国防医学杂志,2017,38 (6):368-371.
- [4] 刘贝,柳永明,陈耀龙,等.基于网络药理学和实验验证的藏药十味乳香散治疗急性痛风性关节炎分子机制探究[J].高原科学研究,2023,7(3):71-85.
- [5] 朱彦蓉,谢和兵,龚春香,等.十味乳香散通过调控线粒体自噬对痛风性肾炎大鼠肾损伤的保护作用[J/OL].中成药,1-7[2024-04-03]. http://kns. cnki. net/kcms/detail/31.1368. R. 20230524. 1520. 002. html.
- [6] 中华人民共和国卫生部药典委员会. 中华人民共和国卫生部药品标准·藏药:第1册[M]. 北京:中华人民共和国卫生部药典委员会,1995:157.
- [7] 代冬海,纪兰菊,甘青梅,等. 藏药十味乳香胶囊中大黄酚含量测定方法的研究[J]. 青海医学院学报,2005,26 (4):240-242.
- [8] 国家药典委员会. 中华人民共和国药典:一部[M]. 北京:中国医药科技出版社,2020:45.
- [9] 李琦,裴河欢,李静,等. HPLC法同时测定余甘子中5种成分的含量及主成分、聚类分析[J]. 中国药房,2018,29 (11):1491-1495.
- [10] 李斌,李鑫,范源. HPLC同时测定三果汤水提物中没食子酸、柯里拉京及鞣花酸含量[J]. 中国中医药信息杂志,2017,24(9):76-79.
- [11] 郑喆,扎西次仁,熊慧,等.一测多评法测定三味蔷薇 散中6种成分的含量[J]. 中国医院药学杂志,2022,42 (9):908-911.
- [12] 黄宽,付鹏,林艾和,等. HPLC法同时测定毛诃子中5种 鞣质类成分的含量[J]. 中国药师,2021,24(3):607-609.
- [13] 魏龙吟,毛民,沙皓淳,等.基于UPLC指纹图谱、含量测定及化学计量学的乳香质量评价[J].中南药学,2021,19(5):947-953.
- [14] 孔令锋,田金苗,郭汉文,等. HPLC法同时测定骨折挫伤胶囊中4种成分的含量[J]. 沈阳药科大学学报,2020,37(5):438-442.

- [15] 钱明明,刘益庆,杨颖. 参三七伤药片(胶囊)中11-羰基-β-乙酰乳香酸含量测定及掺假物松香酸的检查[J]. 中国处方药,2021,19(12):22-25.
- [16] 傅咏梅,卢伟玲,王欢,等. 复方罗布麻颗粒UPLC特征 图谱及6个成分含量测定[J]. 中国现代中药,2024,26 (3):499-506.
- [17] 吕倩倩,谢和兵,尼玛次仁,等.西藏芜根中总多糖含量测定方法及单糖指纹图谱研究[J].中国药业,2024,33(7):83-87.
- [18] 乔晓莉,曹宁宁,王清果,等.清热利胆片HPLC指纹图 谱建立及多成分含量测定研究[J]. 天津中医药,2023,9(11):1457-1465.
- [19] 亓旗,崔雅萍,梁文仪,等. 藏药余甘子与诃子化学和药理作用比较[J]. 世界科学技术—中医药现代化, 2016,18(7):1171-1176.
- [20] 王文军,丁一,窦芳,等. 藏药三果汤散化学成分、质量控制及药理作用研究概况[J]. 中国药房,2019,30(4):556-559.
- [21] 董伯岩,克珠,卢旭亚. 三果汤散对急性痛风局部静脉 全血黏度、红细胞分析及炎性因子的影响[J]. 中华中 医药杂志,2020,35(10):5325-5328.
- [22] 李华爽,刘永建,杨洪柳,等. 诃子化学成分、药理作用机制、质量控制及炮制研究进展[J]. 天然产物研究与开发,2022,34(12);2130-2141.
- [23] 李雪冬,罗晓敏,马筝,等. 毛诃子化学成分和药理作用的研究进展及其质量标志物(Q-Marker)预测分析[J]. 中草药,2023,54(3):976-990.
- [24] 兰杨,姜红,张仕瑾,等.余甘子化学成分、药理活性及质量控制提升的研究进展[J].中国药业,2020,29(7): 156-159
- [25] 刘迪,张冰洋,姚铁,等. 乳香化学成分及药理作用研究进展[J]. 中草药,2020,51(22):5900-5914.
- [26] 董运茁,张弋,刘振丽,等. 乳香醋炙前后13种乳香酸成分含量变化及活性比较研究[J]. 中草药,2021,52 (23):7128-7137.
- [27] 叶琪,苏宏娜,杨艺,等. 乳香有效成分治疗冠心病的作用机制研究进展[J]. 中草药,2023,54(16):5379-5389.
- [28] 屈艳君,王文慧,曹家南,等. 鞣花酸的制备及应用研究进展[J]. 中国食物与营养,2022,28(6):39-45.
- [29] 吴小磊,钟晨,史金铭. 鞣花酸的生物学效应[J]. 中国 林副特产,2019(1):73-78.
- [30] 王佳鸾,赵俸艺,张春红,等. 鞣花酸提取、纯化及其生物活性研究进展[J]. 食品工业科技,2022,43(13):416-424.
- [31] MADY F M, SHAKER M A. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric

- nanoparticles [ J ] . Int J Nanomedicine , 2017 , 12 : 7405-7417 .
- [32] 施洋,孙芸,谢莉,等. 石榴皮中活性成分鞣花酸的平衡溶解度与油水分配系数的测定[J]. 新疆医科大学学报,2016,39(2):145-148.
- [33] 孟达,张雅琼,秦定梅,等. 余甘子的酚类成分及药理活性研究进展[J]. 中成药,2022,44(10):3269-3274.
- [34] 周坤,简平,梁文仪,等.基于 UPLC-Q-Exactive Orbitrap-MS分析藏药诃子与毛诃子化学成分[J]. 质谱学报,2020,41(3):254-267.

(收稿日期: 2024-04-19 编辑: 王笑辉)